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A ring R is semilocal if R/J(R) is semisimple artinian, that is, a
finite direct product of rings of matrices over division rings.

If R is commutative,
R semilocal < R has finitely many maximal ideals.
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Examples of endomorphism rings that are semilocal rings

» Endomorphism rings of artinian modules are semilocal rings.
(Camps and Dicks)

» Endomorphism rings of finitely generated modules over a
semilocal commutative ring are semilocal rings. (Warfield)

» Endomorphism rings of finitely presented modules over a
semilocal ring are semilocal rings. (- and Herbera)

» A module is uniserial if its lattice of submodules is linearly
ordered by C. Endomorphism rings of finite direct sums of
uniserial modules are semilocal rings. (Herbera and
Shamsuddin)

» Endomorphism rings of modules of finite Goldie dimension
and finite dual Goldie dimension are semilocal rings. (Herbera
and Shamsuddin)
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Local Morphisms

A ring morphism ¢: R — S is a local morphism if, for every r € R,
©(r) invertible in S implies r invertible in R. (First studied, in the
non-commutative setting, by P. M. Cohn in the case of S a
division ring.)



Semilocal Rings and Local Morphisms

Theorem

(Camps and Dicks) A ring R is semilocal if and only if there
exists a local morphism R — S for some semilocal ring S, if and
only if there exists a local morphism R — S for some semisimple
artinian ring S.
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Rings of finite type

[F.-P¥ihoda, 2011]

A special example of semilocal rings is given by rings of finite type,
that is, the rings R with R/J(R) a finite direct product of division
rings.

More precisely:



Rings of type n

Proposition

Let S be a ring with Jacobson radical J(S) and n > 1 be an

integer. The following conditions are equivalent:

(a) The ring S/J(S) is a direct product of n division rings.

(b) n is the smallest of the positive integers m for which there is a
local morphism of S into a direct product of m division rings.

(c) The ring S has exactly n distinct maximal right ideals, and
they are all two-sided ideals in S.

(d) The ring S has exactly n distinct maximal left ideals, and they
are all two-sided ideals in S.



Rings of type n

Proposition

Let S be a ring with Jacobson radical J(S) and n > 1 be an

integer. The following conditions are equivalent:

(a) The ring S/J(S) is a direct product of n division rings.

(b) n is the smallest of the positive integers m for which there is a
local morphism of S into a direct product of m division rings.

(c) The ring S has exactly n distinct maximal right ideals, and
they are all two-sided ideals in S.

(d) The ring S has exactly n distinct maximal left ideals, and they
are all two-sided ideals in S.

A ring is said to be of type n if it satisfies the equivalent conditions
of the Proposition.
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Examples of modules of finite type

A module has type 0 if and only if it is the zero module.
A module has type 1 if and only if its endomorphism ring is local.

A module has type 2 if and only if its endomorphism ring has
exactly two maximal right ideals, necessarily two-sided.

Uniserial modules are of type < 2.

Cyclically presented modules over local rings are of type < 2.
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Examples of modules of finite type

If f: E — E’ is a homomorphism between injective
indecomposable modules, then ker f is of type < 2.

If f: P — P’ is a homomorphism between couniform projective
modules, then cokerf is of type < 2.

A module Mg is square-free if it does not contain a direct sum of
two non-zero isomorphic submodules.

A finitely generated square-free semisimple module is a module of
finite type.
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Examples of modules of finite type

An injective module of finite Goldie dimension is of finite type if
and only if it is square-free.

If Mg is an artinian module with a square-free socle, then Mg is a
module of finite type.

If Mg is a noetherian module with Mg/MgJ(R) a semisimple
square-free module, then Mg is a module of finite type.

Let E, E’ be injective square-free modules of finite Goldie
dimension and let ¢: E — E’ be a module morphism. Then ker
is a module of finite type.
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Local Functors

An additive functor F: A — B between preadditive categories A
and B is said to be a local functor if, for every morphism f: A — A’
in A, F(f) isomorphism in B implies f isomorphism in A.

It must not be confused with isomorphism reflecting functor: for
every A, A’ objects of A, F(A) = F(A’) implies A~ A’

The functor — ®z Q of { f. g. free Z-modules } to vect-Q is
isomorphism reflecting but not local.

The functor — ®z Z/pZ x soc of {Z/pZ,7./p*Z} to
vect-Z/pZ x vect-Z/pZ is local but not isomorphism reflecting.
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Lemma

Let A be a preadditive category and A, B objects of A. The
following conditions are equivalent for a morphism f: A — B:

(a) 14 — gf has a left inverse for every morphism g: B — A;

(b) 1g — fg has a left inverse for every morphism g: B — A;

(c) 1a — gf has a two-sided inverse for every morphism g: B — A.



Jacobon radical

Lemma

Let A be a preadditive category and A, B objects of A. The
following conditions are equivalent for a morphism f: A — B:

(a) 14 — gf has a left inverse for every morphism g: B — A;

(b) 1g — fg has a left inverse for every morphism g: B — A;

(c) 1a — gf has a two-sided inverse for every morphism g: B — A.

Let J(A, B) be the set of all morphisms f € Hom 4(A, B)
satisfying the equivalent conditions of the Lemma. Then J turns
out to be an ideal of the category A, called the Jacobson radical

of A.
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Local Functors and Jacobson radical

» The canonical functor A — A/J, with A a preadditive
category and J its Jacobson radical, is a local functor.

» More generally, if A is a preadditive category and Z is any
ideal of A contained in the Jacobson radical, the canonical
functor A — A/T is a local functor.

» Conversely, the kernel of any local functor F: A — B is
contained in the Jacobson radical of A.

» A full functor F: A — B is a local functor if and only if its
kernel is contained in the Jacobson radical J of A.
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The canonical functor A — A/Zy x --- x A/,

[Alahmadi-F., 2013]

Problem: Let A be a preadditive category and let I;,...,Z, be
ideals of A.

When is the canonical functor A — A/Zy x --- x A/I, a local
functor?
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For our problem, we will introduce non-commutative polynomials
Pn = pPn(X,¥1,...,yn) with coefficients in the ring Z of integers.
More precisely, let x, y1, 2, y3, ... be infinitely many
non-commutative indeterminates over the ring Z. There is a
strictly ascending chain

Z{x,y1) C Z{x, y1,¥2) C Z({x, y1,¥2,¥3) C ...

of non-commutative integral domains, where Z(x, y1,..., ¥n)
indicates the ring of polynomials in the non-commutative
indeterminates x, y1, ..., ¥, with coefficients in Z.



Proposition

Let 7Z be the ring of integers and x, y1, y2,v3,... be
non-commutative indeterminates over 7.



Proposition

Let 7Z be the ring of integers and x, y1, y2,v3,... be
non-commutative indeterminates over Z. Let Z(x,y1,...,yn) be
the ring of non-commutative polynomials in the indeterminates
X, Y1, ..., Yn with coefficients in Z for every n > 1.



Proposition

Let 7Z be the ring of integers and x, y1, y2,v3,... be
non-commutative indeterminates over Z. Let Z(x,y1,...,yn) be
the ring of non-commutative polynomials in the indeterminates
X, Y1, - -+, Yn With coefficients in Z for every n > 1. Then there
exists, for each n > 1, a unique polynomial

Pn = pPn(X,¥1,...,¥n) € Z{X,¥1,...,Yn) such that

1—pox =(1—y1x)(1 = y2x)...(1 = ynx). (1)



Proposition

Let 7Z be the ring of integers and x, y1, y2,v3,... be
non-commutative indeterminates over Z. Let Z(x,y1,...,yn) be
the ring of non-commutative polynomials in the indeterminates
X, Y1, - -+, Yn With coefficients in Z for every n > 1. Then there
exists, for each n > 1, a unique polynomial

Pn = pPn(X,¥1,...,¥n) € Z{X,¥1,...,Yn) such that

1—pox =(1—y1x)(1 = y2x)...(1 = ynx). (1)

Moreover, the polynomials p,, n > 1, have the following properties:



Proposition

Let 7Z be the ring of integers and x, y1, y2,v3,... be
non-commutative indeterminates over Z. Let Z(x,y1,...,yn) be
the ring of non-commutative polynomials in the indeterminates
X, Y1, - -+, Yn With coefficients in Z for every n > 1. Then there
exists, for each n > 1, a unique polynomial

Pn = pPn(X,¥1,...,¥n) € Z{X,¥1,...,Yn) such that
1—pox =(1—y1x)(1 = y2x)...(1 = ynx). (1)

Moreover, the polynomials p,, n > 1, have the following properties:
(a) 1 —xpp = (1 —xy1)(1 — xy2) ... (1 — xy,) for every n > 1.



Proposition

Let 7Z be the ring of integers and x, y1, y2,v3,... be
non-commutative indeterminates over Z. Let Z(x,y1,...,yn) be
the ring of non-commutative polynomials in the indeterminates
X, Y1, - -+, Yn With coefficients in Z for every n > 1. Then there
exists, for each n > 1, a unique polynomial

Pn = pPn(X,¥1,...,¥n) € Z{X,¥1,...,Yn) such that
1—pox =(1—y1x)(1 = y2x)...(1 = ynx). (1)

Moreover, the polynomials p,, n > 1, have the following properties:
(a) 1 —xpp = (1 —xy1)(1 — xy2) ... (1 — xy,) for every n > 1.
(b) p1 = y1, and ppy1 = Ynt1 + pn(1 — Xyns1) for every n > 1.



Proposition

Let 7Z be the ring of integers and x, y1, y2,v3,... be
non-commutative indeterminates over Z. Let Z(x,y1,...,yn) be
the ring of non-commutative polynomials in the indeterminates
X, Y1, - -+, Yn With coefficients in Z for every n > 1. Then there
exists, for each n > 1, a unique polynomial

Pn = pPn(X,¥1,...,¥n) € Z{X,¥1,...,Yn) such that

1—pox =(1—y1x)(1 = y2x)...(1 = ynx). (1)

Moreover, the polynomials p,, n > 1, have the following properties:
(a) 1 —xpp = (1 —xy1)(1 — xy2) ... (1 — xy,) for every n > 1.
(b) p1 = y1, and ppy1 = Ynt1 + pn(1 — Xyns1) for every n > 1.

(c)

Pn = Z1§i§n Yi— Z1gi1<i2§n)/i1xyf2+
+ Y 1< cicinan YaXYiXVis — -+ (1) Lyixyax .. xyn

for every n > 1.
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Proposition

Let A be a preadditive category, and 11, ...,Z, be ideals of A. Let
f: A— B be a morphism in A. Assume that the image f: A — B
of f in the factor category A/Z; is an isomorphism for every
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Proposition

Let A be a preadditive category, and 11, ...,Z, be ideals of A. Let
f: A— B be a morphism in A. Assume that the image f: A — B
of f in the factor category A/Z; is an isomorphism for every
i=1,2,...,n. Letgi: B— A be a morphism in A whose image
in A/T; is the inverse of f in A/Z;, for all i =1,2,...,n. Then
the image of f in A/Zy N ---NZI, is an isomorphism. Its inverse in
A/Zy 0 ---NZ, is the image of the morphism

pn(f,&1,-..,8n): B— A.
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Theorem

The following conditions are equivalent for n ideals 11, ...,Z, of a
preadditive category A with Jacobson radical J:

(a) The canonical functor A — A/Iy x --- x AJZ, is local.

(b) The canonical functor A — A/Zy N ---NZ, is local.
(c)Iyn---NZ,C J.
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Corollary

Let I3, ...,Z, be n ideals of a preadditive category I3, and let C be
the full subcategory of B whose objects are all the objects A of B
with Z1 (A, A) N - - N Zy(A, A) C J(Endp(A)). Then the ideal
T1N---NZ, restricted to the full subcategory C, is contained in
the Jacobson radical J of C, so that the canonical functor
C:C—C/Iy x---xCJ/ZL, is local. The category C turns out to
be the largest full subcategory of B with this property. Moreover, if
B is an additive category, then C is also an additive category, and if
B is additive and idempotents split in B, then idempotents split
also in C.
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Semilocal Categories

A preadditive category A is a null category if all its objects are
zero objects.

A preadditive category is semilocal if it is non-null and the
endomorphism ring of every non-zero object is a semilocal ring.
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The full subcategory of all artinian right R-modules.
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The full subcategory of all finitely generated R-modules, for R
a semilocal commutative ring.

v

The full subcategory of all finitely presented modules right
R-modules, for R a semilocal ring.

v

The full subcategory of all serial modules of finite Goldie
dimension.



Examples of Full Semilocal Subcategories of Mod-R

> The full subcategory of all artinian right R-modules.

» The full subcategory of all finitely generated R-modules, for R
a semilocal commutative ring.

» The full subcategory of all finitely presented modules right
R-modules, for R a semilocal ring.

» The full subcategory of all serial modules of finite Goldie
dimension.

» The full subcategory of all modules of finite Goldie dimension
and finite dual Goldie dimension.
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of the ideals Z;.



Local functors and maximal ideals

Proposition

Let A be a preadditive category and 11, ...,Z, be finitely many
ideals of A.

(a) If the canonical functor A — ATy x AJZy x --- x AT, is a
local functor, then every maximal ideal of A contains at least one
of the ideals Z;.

(b) If the category A is semilocal and every maximal ideal of A
contains at least one of the ideals Z;, then the canonical functor
A— A/Ty x AJTy x -+ x AJL, is local.



Local functors and maximal ideals

Proposition

Let A be a preadditive category and 11, ...,Z, be finitely many
ideals of A.

(a) If the canonical functor A — ATy x AJZy x --- x AT, is a
local functor, then every maximal ideal of A contains at least one
of the ideals Z;.

(b) If the category A is semilocal and every maximal ideal of A
contains at least one of the ideals Z;, then the canonical functor
A— A/Ty x AJTy x -+ x AJL, is local.

Proposition
If C is a semilocal category, the canonical functor
F:C— @MeMax(C)C/M is local.



Local functor implies isomorphism reflecting functor for
semilocal categories

Theorem

If A is a semilocal category and 11, ...,Z, are ideals of A such
that the canonical functor A — A/Iy X --- x AJZ, is local, then
two objects of A are isomorphic in A if and only if they are
isomorphic in A/Z; for every i =1,2,... n.
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Example 1
[Alahmadi-F., 2013]

R a ring, ideals in the category Mod-R.
(1) The ideal A, defined by

A(Ag,Br) :={f: Agr — Br | ker f essential in Ag }
for every pair Agr, Br of right R-modules.
(2) The ideal X, defined by
Y(Agr,Br) :={f: Agr — Bgr | f(AR) is superfluous in Bgr }
for every pair Ag, Br of right R-modules.

Notice that A + ¥ is not the improper ideal of Mod-R in general.
For instance, if R is a division ring, then both A and ¥ are the
zero ideal.



Example 1

Theorem
The product functor Mod-R — Mod-R/A x Mod-R/X is a local
functor.
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Spectral Category (Gabriel and Oberst)

Let A be any Grothendieck category.
If A,A” € Ob(A), write A" <. A for “A’ is an essential subobject
of A".

The spectral category Spec A of A:
e the same objects as A;
e for objects A and B of A,
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where the direct limit is taken over the family of all essential
subobjects A’ of A.
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projective and injective.

There is a canonical, left exact, covariant, additive functor

P: A — Spec A, which is the identity on objects and maps any
morphism f € Hom 4(A, B) to its canonical image in

HomSpec A(A,B).

The ideal A is the kernel of the functor P.
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The Dual Construction (- and Herbera)

The construction of the spectral category can be dualized.

Let A be any Grothendieck category.
If B,B" € Ob(A), write B’ <s B for "B’ is a superfluous subobject
of B”.

The category A’
e the same objects as A;
e for objects A and B of A,

Hom 4 (A, B) == |i_m>HomA(A, B/B"),

where the direct limit is taken over the family of all superfluous
subobjects B’ of B.
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The Dual Construction

The category A’ is an additive category in which every morphism
has a cokernel, but A’ does not have kernels in general.

There is a canonical functor F: A — A’ which is the identity on
objects and maps any morphism f € Hom 4(A, B) to its canonical
image in Hom 4 (A, B).

The ideal X is the kernel of the functor F.
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AW = kernel of the right derived functor

P(): Mod-R — Spec(Mod-R)
of the left exact, covariant, additive functor
P: Mod-R — Spec(Mod-R).

Theorem

The product functor Mod-R — Mod-R/A x Mod-R/AM s a
local functor.
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Example 3

C = full subcategory of Mod-R whose objects are all right
R-modules with a projective cover.

2(1) = kernel of the “derived functor” F(l): C — (Mod-R)’ of the
functor F: C — (Mod-R)'.

Theorem
The product functor C — C/¥ x C/¥(yy is a local functor.
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An application

Two R-modules M and N belong to the same monogeny class
(written [M],, = [N]m) if there exist a monomorphism M — N and
a monomorphism N — M.

Similarly, M and N belong to the same epigeny class (written
[M]e = [N]e) if there exist an epimorphism M — N and an
epimorphism N — M.
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Weak Krull-Schmidt for uniserial modules

[F, TAMS 1996].

Let Uy, ..., Uy, V4, ..., Vi be non-zero uniserial right modules
over an arbitrary ring R. Then U1 ® - U, 2 Vi & - D V,; if
and only if n = t and there are two permutations o, 7 of
{1,2,...,n} such that [Uj]m = [V(i)]m and [Uile = [Vy(jle for
every i=1,2,...,n.



Ideal A and monogeny classes

If two modules Ag, Br are isomorphic objects in the category
Mod-R/A, then they have the same monogeny class



The general result

Theorem

(Weak Krull-Schmidt Theorem for additive categories) Let A be
an additive category and 11, ...,Z, be ideals of A such that the
canonical functor A — A/Iy x -+ x AJ/Z, is a local functor. Let
Ai, i=1,2,... t,and B;, j=1,2,..., m, be objects of A such
that the endomorphism rings End 4 /Ik(A,-) are local rings for every

i=1,2,...,t and every k =1,2,...,n and the endomorphism
rings End 4,7, (B;) are all local rings for every j = 1,2,...,m and
every k=1,2,....,n. Then A1 ® --- DA =B & ---P B, ifand
only if t = m and there exist n permutations oy, k=1,2,...,n,

of {1,2,...,t} with A; isomorphic to B, (i in A/Zy for every
i=1,2,....,tandevery k =1,2,... n.
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A curiosity: Birkhoff's Theorem for skeletally small
preadditive categories

[F.- Fernandez-Alonso, 2008]

A ring R is subdirectly irreducible if the intersection of all non-zero
two-sided ideals of R is non-zero.

Birkhoff’s Theorem. Any ring is a subdirect product of
subdirectly irreducible rings.
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Subdirectly irreducible rings

R subdirect product of a family of rings R; (i € I) = there is an
embedding R < [[;c; Ri in such a way that 7;(R) = R; for each
projection 7;: [[;c; Ri — R;.

R — [];c/ Ri is called a subdirect embedding.

R is subdirectly irreducible if and only if for every family of rings R;
and every subdirect embedding ¢: R — [];., Ri, there exists an
index i € | such that wie: R — R; is an isomorphism.



Birkhoff's Theorem

Birkhoff's Theorem hold for rings, right modules, lattices, any
universal algebra.



Birkhoff's Theorem for skeletally small preadditive
categories

Let A; (i € 1) be a family of preadditive categories,

[I;c; Ai the product category and,

for every j € I, P;: T];c; Ai — Aj be the canonical projection.
We say that a preadditive category A is a subdirect product of the
indexed family { A; | i € I } of preadditive categories if A is a
subcategory of the product category [];., A;i and, for every i € |,
the restriction Pj|4: A — A; is a full functor that induces an onto
mapping Ob(A) — Ob(A;).
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Birkhoff's Theorem for skeletally small preadditive
categories

A functor F: A — B between two categories A, B is dense if every
object of B is isomorphic to F(A) for some object A of A.

A subdirect embedding F: A — [];c; A; is a faithful additive
functor F such that, for every i € I, P;F: A — A; is a dense full
functor.

A preadditive category A is subdirectly irreducible if, for every
subdirect embedding F: A — [];c, Aj, there exists an index i € |
such that P;F: A — A; is a category equivalence.



Theorem

The following conditions are equivalent for a skeletally small
preadditive category A:

(1) A is subdirectly irreducible.

(2) There exists a nonzero ideal T of A such that Z C J for every
nonzero ideal J of A.

(3) If the intersection of a set F of ideals of A is the zero ideal,
then one of the ideals in F is zero.

(4) There exist two objects A and B of A and a nonzero morphism
f: A — B such that, for every nonzero morphism f: A— B in A,
there exist a positive integer n and morphisms gi,...,8n: A — A
and hy,...,hy: B— B with f =Y_"_, hifg;.

(5) There exist two objects A and B of A with the following two
properties: (a) The (End4(B), End4(A))-bimodule A(A, B) is an
essential extension of a simple (End 4(B), End 4(A))-subbimodule;
(b) For every A, B objects of A and nonzero morphism f: A — B
in A, one has that A(B, B)fA(A, A) # 0.



Birkhoff's Theorem for skeletally small preadditive
categories

For every skeletally small preadditive category A, there exists a
subdirect embedding of A into a direct product of subdirectly
irreducible preadditive categories.
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An example

Let A, Af be the full subcategories of Ab whose objects are all
torsion-free abelian groups and all torsion-free abelian groups of
finite rank, respectively. Then A and Ay are subdirectly irreducible
categories and their least nonzero ideal is generated by the
inclusion €: Z — Q. [F., 2009]
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Sr € S, the corresponding element Js, of M is the ideal of
Mod-R generated by any morphism f: Rg — E(Sgr) with image
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The case of Mod-R

Theorem

Let R be a ring, S a set of representatives of the simple right
R-modules up to isomorphism, and M the set of all minimal
nonzero ideals of Mod-R. Then:

(1) Every nonzero ideal of Mod-R contains an element of M.
(2) There is a one-to-one correspondence between S and M. If
Sr € S, the corresponding element Js, of M is the ideal of
Mod-R generated by any morphism f: Rg — E(Sgr) with image
Sk.

Corollary

Let R be a ring. The category Mod-R is subdirectly irreducible if
and only if R has a unique simple right module up to isomorphism.
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The torsion theory (7s, Fs)

R aring

S a set of representatives of the simple right R-modules up to
isomorphism

S = Sk a fixed module in S

(7s, Fs) the torsion theory cogenerated by E(Sg), i.e., Fs is the
smallest class containing E(Sg) and closed under subobjects,
products and extensions, that is, a module is in Fs if and only if it
is isomorphic to a submodule of a direct product of copies of
E(Sr). Equivalently, Fs the class of all right R-modules
cogenerated by E(S).

= (Ts, Fs) is hereditary (= Ts is closed under submodules).
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The torsion theory (7s, Fs)

The class Ts consists of all R-modules Tg with
Hom(Tg, E(Sg)) = 0; equivalently, 7s consists of all modules Tg
in Mod-R with no subquotient isomorphic to Sg.

Let ts: Mod-R — Mod-R be the left exact radical corresponding
to (7s, Fs).

Let Zs be the ideal of Mod-R defined, for every Agr, Br, by
Zs(AR, BR) = { fe HOIn(AR, BR) | f(AR) - ts(BR) }

Equivalently, Zs(Ag, Br) consists of all morphisms

f € Hom(Ag, Br) that factor through a module in 7s, so that
Mod-R/Zs is the stable category of Mod-R modulo the
subcategory Ts.



The case of Mod-R

Theorem
Let R be a ring, S a set of representatives of the simple right
R-modules up to isomorphism, and, for every S € S,

Is(AR, BR) = {f € HOIH(AR, BR) | f(AR) - ts(BR) }

Then:

(1) For every S € S, the category Mod-R/Zs is subdirectly
irreducible.

(2) The canonical functor Mod-R — [[scs Mod-R/Zs is a
subdirect embedding.



