Semilocal categories, local functors and applications

Alberto Facchini
University of Padova, Italy

Lens, 1 July 2013

Semilocal Rings

A ring R is semilocal if $R / J(R)$ is semisimple artinian, that is, a finite direct product of rings of matrices over division rings.

Semilocal Rings

A ring R is semilocal if $R / J(R)$ is semisimple artinian, that is, a finite direct product of rings of matrices over division rings.

If R is commutative,
R semilocal $\Leftrightarrow R$ has finitely many maximal ideals.

Examples of endomorphism rings that are semilocal rings

Examples of endomorphism rings that are semilocal rings

- Endomorphism rings of artinian modules are semilocal rings. (Camps and Dicks)

Examples of endomorphism rings that are semilocal rings

- Endomorphism rings of artinian modules are semilocal rings. (Camps and Dicks)
- Endomorphism rings of finitely generated modules over a semilocal commutative ring are semilocal rings. (Warfield)

Examples of endomorphism rings that are semilocal rings

- Endomorphism rings of artinian modules are semilocal rings. (Camps and Dicks)
- Endomorphism rings of finitely generated modules over a semilocal commutative ring are semilocal rings. (Warfield)
- Endomorphism rings of finitely presented modules over a semilocal ring are semilocal rings. (- and Herbera)

Examples of endomorphism rings that are semilocal rings

- Endomorphism rings of artinian modules are semilocal rings. (Camps and Dicks)
- Endomorphism rings of finitely generated modules over a semilocal commutative ring are semilocal rings. (Warfield)
- Endomorphism rings of finitely presented modules over a semilocal ring are semilocal rings. (- and Herbera)
- A module is uniserial if its lattice of submodules is linearly ordered by \subseteq. Endomorphism rings of finite direct sums of uniserial modules are semilocal rings. (Herbera and Shamsuddin)

Examples of endomorphism rings that are semilocal rings

- Endomorphism rings of artinian modules are semilocal rings. (Camps and Dicks)
- Endomorphism rings of finitely generated modules over a semilocal commutative ring are semilocal rings. (Warfield)
- Endomorphism rings of finitely presented modules over a semilocal ring are semilocal rings. (- and Herbera)
- A module is uniserial if its lattice of submodules is linearly ordered by \subseteq. Endomorphism rings of finite direct sums of uniserial modules are semilocal rings. (Herbera and Shamsuddin)
- Endomorphism rings of modules of finite Goldie dimension and finite dual Goldie dimension are semilocal rings. (Herbera and Shamsuddin)

Local Morphisms

A ring morphism $\varphi: R \rightarrow S$ is a local morphism if, for every $r \in R$, $\varphi(r)$ invertible in S implies r invertible in R.

Local Morphisms

A ring morphism $\varphi: R \rightarrow S$ is a local morphism if, for every $r \in R$, $\varphi(r)$ invertible in S implies r invertible in R. (First studied, in the non-commutative setting, by P . M. Cohn in the case of S a division ring.)

Semilocal Rings and Local Morphisms

Theorem

(Camps and Dicks) A ring R is semilocal if and only if there exists a local morphism $R \rightarrow S$ for some semilocal ring S, if and only if there exists a local morphism $R \rightarrow S$ for some semisimple artinian ring S.

Rings of finite type

[F.-Příhoda, 2011]

Rings of finite type

[F.-Príhoda, 2011]
A special example of semilocal rings is given by rings of finite type, that is, the rings R with $R / J(R)$ a finite direct product of division rings.

Rings of finite type

[F.-Príhoda, 2011]
A special example of semilocal rings is given by rings of finite type, that is, the rings R with $R / J(R)$ a finite direct product of division rings.

More precisely:

Rings of type n

Proposition

Let S be a ring with Jacobson radical $J(S)$ and $n \geq 1$ be an integer. The following conditions are equivalent:
(a) The ring $S / J(S)$ is a direct product of n division rings.
(b) n is the smallest of the positive integers m for which there is a local morphism of S into a direct product of m division rings.
(c) The ring S has exactly n distinct maximal right ideals, and they are all two-sided ideals in S.
(d) The ring S has exactly n distinct maximal left ideals, and they are all two-sided ideals in S.

Rings of type n

Proposition

Let S be a ring with Jacobson radical $J(S)$ and $n \geq 1$ be an integer. The following conditions are equivalent:
(a) The ring $S / J(S)$ is a direct product of n division rings.
(b) n is the smallest of the positive integers m for which there is a local morphism of S into a direct product of m division rings.
(c) The ring S has exactly n distinct maximal right ideals, and they are all two-sided ideals in S.
(d) The ring S has exactly n distinct maximal left ideals, and they are all two-sided ideals in S.

A ring is said to be of type n if it satisfies the equivalent conditions of the Proposition.

Rings and modules of finite type

A ring is of finite type if it is of type n for some $n \geq 1$.

Rings and modules of finite type

A ring is of finite type if it is of type n for some $n \geq 1$.
A module is of type n if its endomorphism ring is a ring of type n.

Rings and modules of finite type

A ring is of finite type if it is of type n for some $n \geq 1$.
A module is of type n if its endomorphism ring is a ring of type n.
A module is of finite type if it is of type n for some n.

Examples of modules of finite type

A module has type 0 if and only if it is the zero module.

Examples of modules of finite type

A module has type 0 if and only if it is the zero module.
A module has type 1 if and only if its endomorphism ring is local.

Examples of modules of finite type

A module has type 0 if and only if it is the zero module.
A module has type 1 if and only if its endomorphism ring is local.
A module has type 2 if and only if its endomorphism ring has exactly two maximal right ideals, necessarily two-sided.

Examples of modules of finite type

A module has type 0 if and only if it is the zero module.
A module has type 1 if and only if its endomorphism ring is local.
A module has type 2 if and only if its endomorphism ring has exactly two maximal right ideals, necessarily two-sided.

Uniserial modules are of type ≤ 2.

Examples of modules of finite type

A module has type 0 if and only if it is the zero module.
A module has type 1 if and only if its endomorphism ring is local.
A module has type 2 if and only if its endomorphism ring has exactly two maximal right ideals, necessarily two-sided.

Uniserial modules are of type ≤ 2.
Cyclically presented modules over local rings are of type ≤ 2.

Examples of modules of finite type

If $f: E \rightarrow E^{\prime}$ is a homomorphism between injective indecomposable modules, then $\operatorname{ker} f$ is of type ≤ 2.

Examples of modules of finite type

If $f: E \rightarrow E^{\prime}$ is a homomorphism between injective indecomposable modules, then $\operatorname{ker} f$ is of type ≤ 2.

If $f: P \rightarrow P^{\prime}$ is a homomorphism between couniform projective modules, then cokerf is of type ≤ 2.

Examples of modules of finite type

If $f: E \rightarrow E^{\prime}$ is a homomorphism between injective indecomposable modules, then $\operatorname{ker} f$ is of type ≤ 2.

If $f: P \rightarrow P^{\prime}$ is a homomorphism between couniform projective modules, then cokerf is of type ≤ 2.

A module M_{R} is square-free if it does not contain a direct sum of two non-zero isomorphic submodules.

Examples of modules of finite type

If $f: E \rightarrow E^{\prime}$ is a homomorphism between injective indecomposable modules, then $\operatorname{ker} f$ is of type ≤ 2.

If $f: P \rightarrow P^{\prime}$ is a homomorphism between couniform projective modules, then cokerf is of type ≤ 2.

A module M_{R} is square-free if it does not contain a direct sum of two non-zero isomorphic submodules.

A finitely generated square-free semisimple module is a module of finite type.

Examples of modules of finite type

An injective module of finite Goldie dimension is of finite type if and only if it is square-free.

Examples of modules of finite type

An injective module of finite Goldie dimension is of finite type if and only if it is square-free.

If M_{R} is an artinian module with a square-free socle, then M_{R} is a module of finite type.

Examples of modules of finite type

An injective module of finite Goldie dimension is of finite type if and only if it is square-free.

If M_{R} is an artinian module with a square-free socle, then M_{R} is a module of finite type.

If M_{R} is a noetherian module with $M_{R} / M_{R} J(R)$ a semisimple square-free module, then M_{R} is a module of finite type.

Examples of modules of finite type

An injective module of finite Goldie dimension is of finite type if and only if it is square-free.

If M_{R} is an artinian module with a square-free socle, then M_{R} is a module of finite type.

If M_{R} is a noetherian module with $M_{R} / M_{R} J(R)$ a semisimple square-free module, then M_{R} is a module of finite type.

Let E, E^{\prime} be injective square-free modules of finite Goldie dimension and let $\varphi: E \rightarrow E^{\prime}$ be a module morphism. Then $\operatorname{ker} \varphi$ is a module of finite type.

Local Functors

An additive functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between preadditive categories \mathcal{A} and \mathcal{B} is said to be a local functor if, for every morphism $f: A \rightarrow A^{\prime}$ in $\mathcal{A}, F(f)$ isomorphism in \mathcal{B} implies f isomorphism in \mathcal{A}.

Local Functors

An additive functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between preadditive categories \mathcal{A} and \mathcal{B} is said to be a local functor if, for every morphism $f: A \rightarrow A^{\prime}$ in $\mathcal{A}, F(f)$ isomorphism in \mathcal{B} implies f isomorphism in \mathcal{A}.

It must not be confused with isomorphism reflecting functor: for every A, A^{\prime} objects of $\mathcal{A}, F(A) \cong F\left(A^{\prime}\right)$ implies $A \cong A^{\prime}$.

Local Functors

An additive functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between preadditive categories \mathcal{A} and \mathcal{B} is said to be a local functor if, for every morphism $f: A \rightarrow A^{\prime}$ in $\mathcal{A}, F(f)$ isomorphism in \mathcal{B} implies f isomorphism in \mathcal{A}.

It must not be confused with isomorphism reflecting functor: for every A, A^{\prime} objects of $\mathcal{A}, F(A) \cong F\left(A^{\prime}\right)$ implies $A \cong A^{\prime}$.

The functor $-\otimes_{\mathbb{Z}} \mathbb{Q}$ of $\{\mathrm{f}$. g. free \mathbb{Z}-modules $\}$ to vect- \mathbb{Q} is isomorphism reflecting but not local.

Local Functors

An additive functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between preadditive categories \mathcal{A} and \mathcal{B} is said to be a local functor if, for every morphism $f: A \rightarrow A^{\prime}$ in $\mathcal{A}, F(f)$ isomorphism in \mathcal{B} implies f isomorphism in \mathcal{A}.

It must not be confused with isomorphism reflecting functor: for every A, A^{\prime} objects of $\mathcal{A}, F(A) \cong F\left(A^{\prime}\right)$ implies $A \cong A^{\prime}$.

The functor $-\otimes_{\mathbb{Z}} \mathbb{Q}$ of $\{\mathrm{f}$. g. free \mathbb{Z}-modules $\}$ to vect- \mathbb{Q} is isomorphism reflecting but not local.

The functor $-\otimes_{\mathbb{Z}} \mathbb{Z} / p \mathbb{Z} \times \operatorname{soc}$ of $\left\{\mathbb{Z} / p \mathbb{Z}, \mathbb{Z} / p^{2} Z\right\}$ to vect- $\mathbb{Z} / p \mathbb{Z} \times$ vect- $\mathbb{Z} / p \mathbb{Z}$ is local but not isomorphism reflecting.

Jacobon radical

Lemma
Let \mathcal{A} be a preadditive category and A, B objects of \mathcal{A}. The following conditions are equivalent for a morphism $f: A \rightarrow B$:
(a) $1_{A}-g f$ has a left inverse for every morphism $g: B \rightarrow A$;
(b) $1_{B}-f g$ has a left inverse for every morphism $g: B \rightarrow A$;
(c) $1_{A}-g f$ has a two-sided inverse for every morphism $g: B \rightarrow A$.

Jacobon radical

Lemma

Let \mathcal{A} be a preadditive category and A, B objects of \mathcal{A}. The following conditions are equivalent for a morphism $f: A \rightarrow B$:
(a) $1_{A}-g f$ has a left inverse for every morphism $g: B \rightarrow A$;
(b) $1_{B}-f g$ has a left inverse for every morphism $g: B \rightarrow A$;
(c) $1_{A}-g f$ has a two-sided inverse for every morphism $g: B \rightarrow A$.

Let $\mathcal{J}(A, B)$ be the set of all morphisms $f \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ satisfying the equivalent conditions of the Lemma. Then \mathcal{J} turns out to be an ideal of the category \mathcal{A}, called the Jacobson radical of \mathcal{A}.

Local Functors and Jacobson radical

- The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{J}$, with \mathcal{A} a preadditive category and \mathcal{J} its Jacobson radical, is a local functor.

Local Functors and Jacobson radical

- The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{J}$, with \mathcal{A} a preadditive category and \mathcal{J} its Jacobson radical, is a local functor.
- More generally, if \mathcal{A} is a preadditive category and \mathcal{I} is any ideal of \mathcal{A} contained in the Jacobson radical, the canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}$ is a local functor.

Local Functors and Jacobson radical

- The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{J}$, with \mathcal{A} a preadditive category and \mathcal{J} its Jacobson radical, is a local functor.
- More generally, if \mathcal{A} is a preadditive category and \mathcal{I} is any ideal of \mathcal{A} contained in the Jacobson radical, the canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}$ is a local functor.
- Conversely, the kernel of any local functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is contained in the Jacobson radical of \mathcal{A}.

Local Functors and Jacobson radical

- The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{J}$, with \mathcal{A} a preadditive category and \mathcal{J} its Jacobson radical, is a local functor.
- More generally, if \mathcal{A} is a preadditive category and \mathcal{I} is any ideal of \mathcal{A} contained in the Jacobson radical, the canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}$ is a local functor.
- Conversely, the kernel of any local functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is contained in the Jacobson radical of \mathcal{A}.
- A full functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is a local functor if and only if its kernel is contained in the Jacobson radical \mathcal{J} of \mathcal{A}.

The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$

[Alahmadi-F., 2013]

The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$

[Alahmadi-F., 2013]
Problem: Let \mathcal{A} be a preadditive category and let $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be ideals of \mathcal{A}.

The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$

[Alahmadi-F., 2013]
Problem: Let \mathcal{A} be a preadditive category and let $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be ideals of \mathcal{A}.
When is the canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$ a local functor?

For our problem, we will introduce non-commutative polynomials $p_{n}=p_{n}\left(x, y_{1}, \ldots, y_{n}\right)$ with coefficients in the ring \mathbb{Z} of integers.

For our problem, we will introduce non-commutative polynomials $p_{n}=p_{n}\left(x, y_{1}, \ldots, y_{n}\right)$ with coefficients in the ring \mathbb{Z} of integers. More precisely, let $x, y_{1}, y_{2}, y_{3}, \ldots$ be infinitely many non-commutative indeterminates over the ring \mathbb{Z}.

For our problem, we will introduce non-commutative polynomials $p_{n}=p_{n}\left(x, y_{1}, \ldots, y_{n}\right)$ with coefficients in the ring \mathbb{Z} of integers. More precisely, let $x, y_{1}, y_{2}, y_{3}, \ldots$ be infinitely many non-commutative indeterminates over the ring \mathbb{Z}. There is a strictly ascending chain

$$
\mathbb{Z}\left\langle x, y_{1}\right\rangle \subset \mathbb{Z}\left\langle x, y_{1}, y_{2}\right\rangle \subset \mathbb{Z}\left\langle x, y_{1}, y_{2}, y_{3}\right\rangle \subset \ldots
$$

of non-commutative integral domains, where $\mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ indicates the ring of polynomials in the non-commutative indeterminates x, y_{1}, \ldots, y_{n} with coefficients in \mathbb{Z}.

Proposition

Let \mathbb{Z} be the ring of integers and $x, y_{1}, y_{2}, y_{3}, \ldots$ be non-commutative indeterminates over \mathbb{Z}.

Proposition

Let \mathbb{Z} be the ring of integers and $x, y_{1}, y_{2}, y_{3}, \ldots$ be non-commutative indeterminates over \mathbb{Z}. Let $\mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ be the ring of non-commutative polynomials in the indeterminates x, y_{1}, \ldots, y_{n} with coefficients in \mathbb{Z} for every $n \geq 1$.

Proposition

Let \mathbb{Z} be the ring of integers and $x, y_{1}, y_{2}, y_{3}, \ldots$ be non-commutative indeterminates over \mathbb{Z}. Let $\mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ be the ring of non-commutative polynomials in the indeterminates x, y_{1}, \ldots, y_{n} with coefficients in \mathbb{Z} for every $n \geq 1$. Then there exists, for each $n \geq 1$, a unique polynomial
$p_{n}=p_{n}\left(x, y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ such that

$$
\begin{equation*}
1-p_{n} x=\left(1-y_{1} x\right)\left(1-y_{2} x\right) \ldots\left(1-y_{n} x\right) \tag{1}
\end{equation*}
$$

Proposition

Let \mathbb{Z} be the ring of integers and $x, y_{1}, y_{2}, y_{3}, \ldots$ be non-commutative indeterminates over \mathbb{Z}. Let $\mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ be the ring of non-commutative polynomials in the indeterminates x, y_{1}, \ldots, y_{n} with coefficients in \mathbb{Z} for every $n \geq 1$. Then there exists, for each $n \geq 1$, a unique polynomial
$p_{n}=p_{n}\left(x, y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ such that

$$
\begin{equation*}
1-p_{n} x=\left(1-y_{1} x\right)\left(1-y_{2} x\right) \ldots\left(1-y_{n} x\right) . \tag{1}
\end{equation*}
$$

Moreover, the polynomials $p_{n}, n \geq 1$, have the following properties:

Proposition

Let \mathbb{Z} be the ring of integers and $x, y_{1}, y_{2}, y_{3}, \ldots$ be non-commutative indeterminates over \mathbb{Z}. Let $\mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ be the ring of non-commutative polynomials in the indeterminates x, y_{1}, \ldots, y_{n} with coefficients in \mathbb{Z} for every $n \geq 1$. Then there exists, for each $n \geq 1$, a unique polynomial
$p_{n}=p_{n}\left(x, y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ such that

$$
\begin{equation*}
1-p_{n} x=\left(1-y_{1} x\right)\left(1-y_{2} x\right) \ldots\left(1-y_{n} x\right) \tag{1}
\end{equation*}
$$

Moreover, the polynomials $p_{n}, n \geq 1$, have the following properties: (a) $1-x p_{n}=\left(1-x y_{1}\right)\left(1-x y_{2}\right) \ldots\left(1-x y_{n}\right)$ for every $n \geq 1$.

Proposition

Let \mathbb{Z} be the ring of integers and $x, y_{1}, y_{2}, y_{3}, \ldots$ be non-commutative indeterminates over \mathbb{Z}. Let $\mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ be the ring of non-commutative polynomials in the indeterminates x, y_{1}, \ldots, y_{n} with coefficients in \mathbb{Z} for every $n \geq 1$. Then there exists, for each $n \geq 1$, a unique polynomial
$p_{n}=p_{n}\left(x, y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ such that

$$
\begin{equation*}
1-p_{n} x=\left(1-y_{1} x\right)\left(1-y_{2} x\right) \ldots\left(1-y_{n} x\right) \tag{1}
\end{equation*}
$$

Moreover, the polynomials $p_{n}, n \geq 1$, have the following properties:
(a) $1-x p_{n}=\left(1-x y_{1}\right)\left(1-x y_{2}\right) \ldots\left(1-x y_{n}\right)$ for every $n \geq 1$.
(b) $p_{1}=y_{1}$, and $p_{n+1}=y_{n+1}+p_{n}\left(1-x y_{n+1}\right)$ for every $n \geq 1$.

Proposition

Let \mathbb{Z} be the ring of integers and $x, y_{1}, y_{2}, y_{3}, \ldots$ be non-commutative indeterminates over \mathbb{Z}. Let $\mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ be the ring of non-commutative polynomials in the indeterminates x, y_{1}, \ldots, y_{n} with coefficients in \mathbb{Z} for every $n \geq 1$. Then there exists, for each $n \geq 1$, a unique polynomial
$p_{n}=p_{n}\left(x, y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ such that

$$
\begin{equation*}
1-p_{n} x=\left(1-y_{1} x\right)\left(1-y_{2} x\right) \ldots\left(1-y_{n} x\right) \tag{1}
\end{equation*}
$$

Moreover, the polynomials $p_{n}, n \geq 1$, have the following properties: (a) $1-x p_{n}=\left(1-x y_{1}\right)\left(1-x y_{2}\right) \ldots\left(1-x y_{n}\right)$ for every $n \geq 1$.
(b) $p_{1}=y_{1}$, and $p_{n+1}=y_{n+1}+p_{n}\left(1-x y_{n+1}\right)$ for every $n \geq 1$. (c)

$$
\begin{aligned}
p_{n}= & \sum_{1 \leq i \leq n} y_{i}-\sum_{1 \leq i_{1}<i_{2} \leq n} y_{i_{1}} x y_{i_{2}}+ \\
& +\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} y_{i_{1} x y_{i_{2}} x y_{i_{3}}}-\cdots+(-1)^{n-1} y_{1} x y_{2} x \ldots x y_{n}
\end{aligned}
$$

for every $n \geq 1$.

Proposition

Let \mathcal{A} be a preadditive category, and $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be ideals of \mathcal{A}. Let $f: A \rightarrow B$ be a morphism in \mathcal{A}.

Proposition

Let \mathcal{A} be a preadditive category, and $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be ideals of \mathcal{A}. Let $f: A \rightarrow B$ be a morphism in \mathcal{A}. Assume that the image $\bar{f}: A \rightarrow B$ of f in the factor category $\mathcal{A} / \mathcal{I}_{i}$ is an isomorphism for every
$i=1,2, \ldots, n$.

Proposition

Let \mathcal{A} be a preadditive category, and $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be ideals of \mathcal{A}. Let $f: A \rightarrow B$ be a morphism in \mathcal{A}. Assume that the image $\bar{f}: A \rightarrow B$ of f in the factor category $\mathcal{A} / \mathcal{I}_{i}$ is an isomorphism for every $i=1,2, \ldots, n$. Let $g_{i}: B \rightarrow A$ be a morphism in \mathcal{A} whose image in $\mathcal{A} / \mathcal{I}_{i}$ is the inverse of \bar{f} in $\mathcal{A} / \mathcal{I}_{i}$, for all $i=1,2, \ldots, n$.

Proposition

Let \mathcal{A} be a preadditive category, and $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be ideals of \mathcal{A}. Let $f: A \rightarrow B$ be a morphism in \mathcal{A}. Assume that the image $\bar{f}: A \rightarrow B$ of f in the factor category $\mathcal{A} / \mathcal{I}_{i}$ is an isomorphism for every $i=1,2, \ldots, n$. Let $g_{i}: B \rightarrow A$ be a morphism in \mathcal{A} whose image in $\mathcal{A} / \mathcal{I}_{i}$ is the inverse of \bar{f} in $\mathcal{A} / \mathcal{I}_{i}$, for all $i=1,2, \ldots, n$. Then the image of f in $\mathcal{A} / \mathcal{I}_{1} \cap \cdots \cap \mathcal{I}_{n}$ is an isomorphism. Its inverse in $\mathcal{A} / \mathcal{I}_{1} \cap \cdots \cap \mathcal{I}_{n}$ is the image of the morphism $p_{n}\left(f, g_{1}, \ldots, g_{n}\right): B \rightarrow A$.

Theorem

The following conditions are equivalent for n ideals $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ of a preadditive category \mathcal{A} with Jacobson radical \mathcal{J} :

Theorem

The following conditions are equivalent for n ideals $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ of a preadditive category \mathcal{A} with Jacobson radical \mathcal{J} :
(a) The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$ is local.

Theorem

The following conditions are equivalent for n ideals $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ of a preadditive category \mathcal{A} with Jacobson radical \mathcal{J} :
(a) The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$ is local.
(b) The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \cap \cdots \cap \mathcal{I}_{n}$ is local.

Theorem

The following conditions are equivalent for n ideals $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ of a preadditive category \mathcal{A} with Jacobson radical \mathcal{J} :
(a) The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$ is local.
(b) The canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \cap \cdots \cap \mathcal{I}_{n}$ is local.
(c) $\mathcal{I}_{1} \cap \cdots \cap \mathcal{I}_{n} \subseteq \mathcal{J}$.

Corollary

Let $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be n ideals of a preadditive category \mathcal{B}, and let \mathcal{C} be the full subcategory of \mathcal{B} whose objects are all the objects A of \mathcal{B} with $\mathcal{I}_{1}(A, A) \cap \cdots \cap \mathcal{I}_{n}(A, A) \subseteq J\left(\operatorname{End}_{\mathcal{B}}(A)\right)$.

Corollary

Let $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be n ideals of a preadditive category \mathcal{B}, and let \mathcal{C} be the full subcategory of \mathcal{B} whose objects are all the objects A of \mathcal{B} with $\mathcal{I}_{1}(A, A) \cap \cdots \cap \mathcal{I}_{n}(A, A) \subseteq J\left(\operatorname{End}_{\mathcal{B}}(A)\right)$. Then the ideal $\mathcal{I}_{1} \cap \cdots \cap \mathcal{I}_{n}$ restricted to the full subcategory \mathcal{C}, is contained in the Jacobson radical \mathcal{J} of \mathcal{C}, so that the canonical functor $C: \mathcal{C} \rightarrow \mathcal{C} / \mathcal{I}_{1} \times \cdots \times \mathcal{C} / \mathcal{I}_{n}$ is local.

Corollary

Let $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be n ideals of a preadditive category \mathcal{B}, and let \mathcal{C} be the full subcategory of \mathcal{B} whose objects are all the objects A of \mathcal{B} with $\mathcal{I}_{1}(A, A) \cap \cdots \cap \mathcal{I}_{n}(A, A) \subseteq J\left(\operatorname{End}_{\mathcal{B}}(A)\right)$. Then the ideal $\mathcal{I}_{1} \cap \cdots \cap \mathcal{I}_{n}$ restricted to the full subcategory \mathcal{C}, is contained in the Jacobson radical \mathcal{J} of \mathcal{C}, so that the canonical functor $\mathcal{C}: \mathcal{C} \rightarrow \mathcal{C} / \mathcal{I}_{1} \times \cdots \times \mathcal{C} / \mathcal{I}_{n}$ is local. The category \mathcal{C} turns out to be the largest full subcategory of \mathcal{B} with this property.

Corollary

Let $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be n ideals of a preadditive category \mathcal{B}, and let \mathcal{C} be the full subcategory of \mathcal{B} whose objects are all the objects A of \mathcal{B} with $\mathcal{I}_{1}(A, A) \cap \cdots \cap \mathcal{I}_{n}(A, A) \subseteq J\left(\operatorname{End}_{\mathcal{B}}(A)\right)$. Then the ideal $\mathcal{I}_{1} \cap \cdots \cap \mathcal{I}_{n}$ restricted to the full subcategory \mathcal{C}, is contained in the Jacobson radical \mathcal{J} of \mathcal{C}, so that the canonical functor $\mathcal{C}: \mathcal{C} \rightarrow \mathcal{C} / \mathcal{I}_{1} \times \cdots \times \mathcal{C} / \mathcal{I}_{n}$ is local. The category \mathcal{C} turns out to be the largest full subcategory of \mathcal{B} with this property. Moreover, if \mathcal{B} is an additive category, then \mathcal{C} is also an additive category, and if \mathcal{B} is additive and idempotents split in \mathcal{B}, then idempotents split also in \mathcal{C}.

Semilocal Categories

A preadditive category \mathcal{A} is a null category if all its objects are zero objects.

Semilocal Categories

A preadditive category \mathcal{A} is a null category if all its objects are zero objects.

A preadditive category is semilocal if it is non-null and the endomorphism ring of every non-zero object is a semilocal ring.

Examples of Full Semilocal Subcategories of Mod- R

Examples of Full Semilocal Subcategories of Mod- R

- The full subcategory of all artinian right R-modules.

Examples of Full Semilocal Subcategories of Mod- R

- The full subcategory of all artinian right R-modules.
- The full subcategory of all finitely generated R-modules, for R a semilocal commutative ring.

Examples of Full Semilocal Subcategories of Mod- R

- The full subcategory of all artinian right R-modules.
- The full subcategory of all finitely generated R-modules, for R a semilocal commutative ring.
- The full subcategory of all finitely presented modules right R-modules, for R a semilocal ring.

Examples of Full Semilocal Subcategories of Mod- R

- The full subcategory of all artinian right R-modules.
- The full subcategory of all finitely generated R-modules, for R a semilocal commutative ring.
- The full subcategory of all finitely presented modules right R-modules, for R a semilocal ring.
- The full subcategory of all serial modules of finite Goldie dimension.

Examples of Full Semilocal Subcategories of Mod- R

- The full subcategory of all artinian right R-modules.
- The full subcategory of all finitely generated R-modules, for R a semilocal commutative ring.
- The full subcategory of all finitely presented modules right R-modules, for R a semilocal ring.
- The full subcategory of all serial modules of finite Goldie dimension.
- The full subcategory of all modules of finite Goldie dimension and finite dual Goldie dimension.

Local functors and maximal ideals

Local functors and maximal ideals

Proposition

Let \mathcal{A} be a preadditive category and $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be finitely many ideals of \mathcal{A}.
(a) If the canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \mathcal{A} / \mathcal{I}_{2} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$ is a local functor, then every maximal ideal of \mathcal{A} contains at least one of the ideals \mathcal{I}_{i}.

Local functors and maximal ideals

Proposition

Let \mathcal{A} be a preadditive category and $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be finitely many ideals of \mathcal{A}.
(a) If the canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \mathcal{A} / \mathcal{I}_{2} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$ is a local functor, then every maximal ideal of \mathcal{A} contains at least one of the ideals \mathcal{I}_{i}.
(b) If the category \mathcal{A} is semilocal and every maximal ideal of \mathcal{A} contains at least one of the ideals \mathcal{I}_{i}, then the canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \mathcal{A} / \mathcal{I}_{2} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$ is local.

Local functors and maximal ideals

Proposition

Let \mathcal{A} be a preadditive category and $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be finitely many ideals of \mathcal{A}.
(a) If the canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \mathcal{A} / \mathcal{I}_{2} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$ is a local functor, then every maximal ideal of \mathcal{A} contains at least one of the ideals \mathcal{I}_{i}.
(b) If the category \mathcal{A} is semilocal and every maximal ideal of \mathcal{A} contains at least one of the ideals \mathcal{I}_{i}, then the canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \mathcal{A} / \mathcal{I}_{2} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$ is local.

Proposition
If \mathcal{C} is a semilocal category, the canonical functor
$F: \mathcal{C} \rightarrow \oplus_{\mathcal{M} \in \operatorname{Max}(\mathcal{C})}^{\mathcal{C}} / \mathcal{M}$ is local.

Local functor implies isomorphism reflecting functor for semilocal categories

Theorem
If \mathcal{A} is a semilocal category and $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ are ideals of \mathcal{A} such that the canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$ is local, then two objects of \mathcal{A} are isomorphic in \mathcal{A} if and only if they are isomorphic in $\mathcal{A} / \mathcal{I}_{i}$ for every $i=1,2, \ldots, n$.

Example 1

[Alahmadi-F., 2013]

Example 1

[Alahmadi-F., 2013]
R a ring, ideals in the category $\operatorname{Mod}-R$.
(1) The ideal Δ, defined by

$$
\Delta\left(A_{R}, B_{R}\right):=\left\{f: A_{R} \rightarrow B_{R} \mid \text { ker } f \text { essential in } A_{R}\right\}
$$

for every pair A_{R}, B_{R} of right R-modules.

Example 1

[Alahmadi-F., 2013]
R a ring, ideals in the category $\operatorname{Mod}-R$.
(1) The ideal Δ, defined by

$$
\Delta\left(A_{R}, B_{R}\right):=\left\{f: A_{R} \rightarrow B_{R} \mid \operatorname{ker} f \text { essential in } A_{R}\right\}
$$

for every pair A_{R}, B_{R} of right R-modules.
(2) The ideal Σ, defined by

$$
\Sigma\left(A_{R}, B_{R}\right):=\left\{f: A_{R} \rightarrow B_{R} \mid f\left(A_{R}\right) \text { is superfluous in } B_{R}\right\}
$$

for every pair A_{R}, B_{R} of right R-modules.

Example 1

[Alahmadi-F., 2013]
R a ring, ideals in the category $\operatorname{Mod}-R$.
(1) The ideal Δ, defined by

$$
\Delta\left(A_{R}, B_{R}\right):=\left\{f: A_{R} \rightarrow B_{R} \mid \text { ker } f \text { essential in } A_{R}\right\}
$$

for every pair A_{R}, B_{R} of right R-modules.
(2) The ideal Σ, defined by

$$
\Sigma\left(A_{R}, B_{R}\right):=\left\{f: A_{R} \rightarrow B_{R} \mid f\left(A_{R}\right) \text { is superfluous in } B_{R}\right\}
$$

for every pair A_{R}, B_{R} of right R-modules.
Notice that $\Delta+\Sigma$ is not the improper ideal of Mod- R in general. For instance, if R is a division ring, then both Δ and Σ are the zero ideal.

Example 1

Theorem
The product functor Mod- $R \rightarrow \operatorname{Mod}-R / \Delta \times \operatorname{Mod}-R / \Sigma$ is a local functor.

Spectral Category (Gabriel and Oberst)

Let \mathcal{A} be any Grothendieck category.

Spectral Category (Gabriel and Oberst)

Let \mathcal{A} be any Grothendieck category.
If $A, A^{\prime} \in \operatorname{Ob}(\mathcal{A})$, write $A^{\prime} \leq_{e} A$ for " A^{\prime} is an essential subobject of $A^{\prime \prime}$.

Spectral Category (Gabriel and Oberst)

Let \mathcal{A} be any Grothendieck category.
If $A, A^{\prime} \in \operatorname{Ob}(\mathcal{A})$, write $A^{\prime} \leq_{e} A$ for " A^{\prime} is an essential subobject of $A^{\prime \prime}$.

The spectral category $\operatorname{Spec} \mathcal{A}$ of \mathcal{A} :

Spectral Category (Gabriel and Oberst)

Let \mathcal{A} be any Grothendieck category.
If $A, A^{\prime} \in \operatorname{Ob}(\mathcal{A})$, write $A^{\prime} \leq_{e} A$ for " A^{\prime} is an essential subobject of $A^{\prime \prime}$.

The spectral category $\operatorname{Spec} \mathcal{A}$ of \mathcal{A} :

- the same objects as \mathcal{A};

Spectral Category (Gabriel and Oberst)

Let \mathcal{A} be any Grothendieck category.
If $A, A^{\prime} \in \operatorname{Ob}(\mathcal{A})$, write $A^{\prime} \leq_{e} A$ for " A^{\prime} is an essential subobject of $A^{\prime \prime}$.

The spectral category $\operatorname{Spec} \mathcal{A}$ of \mathcal{A} :

- the same objects as \mathcal{A};
- for objects A and B of \mathcal{A},

$$
\operatorname{Hom}_{\operatorname{Spec} \mathcal{A}}(A, B):=\underset{\longrightarrow}{\lim } \operatorname{Hom}_{\mathcal{A}}\left(A^{\prime}, B\right),
$$

where the direct limit is taken over the family of all essential subobjects A^{\prime} of A.

Spectral Category

The category Spec \mathcal{A} turns out to be a Grothendieck category in which every exact sequence splits, that is, every object is both projective and injective.

Spectral Category

The category Spec \mathcal{A} turns out to be a Grothendieck category in which every exact sequence splits, that is, every object is both projective and injective.

There is a canonical, left exact, covariant, additive functor $P: \mathcal{A} \rightarrow \operatorname{Spec} \mathcal{A}$, which is the identity on objects and maps any morphism $f \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ to its canonical image in $\operatorname{Hom}_{\operatorname{Spec} \mathcal{A}}(A, B)$.

Spectral Category

The category Spec \mathcal{A} turns out to be a Grothendieck category in which every exact sequence splits, that is, every object is both projective and injective.

There is a canonical, left exact, covariant, additive functor $P: \mathcal{A} \rightarrow \operatorname{Spec} \mathcal{A}$, which is the identity on objects and maps any morphism $f \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ to its canonical image in $\operatorname{Hom}_{\mathrm{Spec} \mathcal{A}}(A, B)$.

The ideal Δ is the kernel of the functor P.

The Dual Construction (- and Herbera)

The construction of the spectral category can be dualized.

The Dual Construction (- and Herbera)

The construction of the spectral category can be dualized.
Let \mathcal{A} be any Grothendieck category.

The Dual Construction (- and Herbera)

The construction of the spectral category can be dualized.
Let \mathcal{A} be any Grothendieck category.
If $B, B^{\prime} \in \operatorname{Ob}(\mathcal{A})$, write $B^{\prime} \leq_{s} B$ for " B^{\prime} is a superfluous subobject of $B^{\prime \prime}$.

The Dual Construction (- and Herbera)

The construction of the spectral category can be dualized.
Let \mathcal{A} be any Grothendieck category.
If $B, B^{\prime} \in \operatorname{Ob}(\mathcal{A})$, write $B^{\prime} \leq_{s} B$ for " B^{\prime} is a superfluous subobject of $B^{\prime \prime}$.

The category \mathcal{A}^{\prime} :

The Dual Construction (- and Herbera)

The construction of the spectral category can be dualized.
Let \mathcal{A} be any Grothendieck category.
If $B, B^{\prime} \in \operatorname{Ob}(\mathcal{A})$, write $B^{\prime} \leq_{s} B$ for " B^{\prime} is a superfluous subobject of $B^{\prime \prime}$.

The category \mathcal{A}^{\prime} :

- the same objects as \mathcal{A};

The Dual Construction (- and Herbera)

The construction of the spectral category can be dualized.
Let \mathcal{A} be any Grothendieck category.
If $B, B^{\prime} \in \operatorname{Ob}(\mathcal{A})$, write $B^{\prime} \leq_{s} B$ for " B^{\prime} is a superfluous subobject of $B^{\prime \prime}$.

The category \mathcal{A}^{\prime} :

- the same objects as \mathcal{A};
- for objects A and B of \mathcal{A},

$$
\operatorname{Hom}_{\mathcal{A}^{\prime}}(A, B):=\underset{\longrightarrow}{\lim } \operatorname{Hom}_{\mathcal{A}}\left(A, B / B^{\prime}\right),
$$

where the direct limit is taken over the family of all superfluous subobjects B^{\prime} of B.

The Dual Construction

The category \mathcal{A}^{\prime} is an additive category in which every morphism has a cokernel, but \mathcal{A}^{\prime} does not have kernels in general.

The Dual Construction

The category \mathcal{A}^{\prime} is an additive category in which every morphism has a cokernel, but \mathcal{A}^{\prime} does not have kernels in general.

There is a canonical functor $F: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ which is the identity on objects and maps any morphism $f \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ to its canonical image in $\operatorname{Hom}_{\mathcal{A}^{\prime}}(A, B)$.

The Dual Construction

The category \mathcal{A}^{\prime} is an additive category in which every morphism has a cokernel, but \mathcal{A}^{\prime} does not have kernels in general.

There is a canonical functor $F: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ which is the identity on objects and maps any morphism $f \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ to its canonical image in $\operatorname{Hom}_{\mathcal{A}^{\prime}}(A, B)$.

The ideal Σ is the kernel of the functor F.

Example 2

$\Delta^{(1)}=$ kernel of the right derived functor

$$
P^{(1)}: \operatorname{Mod}-R \rightarrow \operatorname{Spec}(\operatorname{Mod}-R)
$$

of the left exact, covariant, additive functor
$P: \operatorname{Mod}-R \rightarrow \operatorname{Spec}(\operatorname{Mod}-R)$.

Example 2

$\Delta^{(1)}=$ kernel of the right derived functor

$$
P^{(1)}: \operatorname{Mod}-R \rightarrow \operatorname{Spec}(\operatorname{Mod}-R)
$$

of the left exact, covariant, additive functor
$P: \operatorname{Mod}-R \rightarrow \operatorname{Spec}(\operatorname{Mod}-R)$.
Theorem
The product functor Mod- $R \rightarrow \operatorname{Mod}-R / \Delta \times \operatorname{Mod}-R / \Delta^{(1)}$ is a local functor.

Example 3

$\mathcal{C}=$ full subcategory of Mod- R whose objects are all right R-modules with a projective cover.

Example 3

$\mathcal{C}=$ full subcategory of Mod- R whose objects are all right R-modules with a projective cover.
$\Sigma_{(1)}=$ kernel of the "derived functor" $F_{(1)}: \mathcal{C} \rightarrow(\operatorname{Mod}-R)^{\prime}$ of the functor $F: \mathcal{C} \rightarrow(\operatorname{Mod}-R)^{\prime}$.

Example 3

$\mathcal{C}=$ full subcategory of Mod- R whose objects are all right R-modules with a projective cover.
$\Sigma_{(1)}=$ kernel of the "derived functor" $F_{(1)}: \mathcal{C} \rightarrow(\operatorname{Mod}-R)$ ' of the functor $F: \mathcal{C} \rightarrow(\operatorname{Mod}-R)^{\prime}$.

Theorem
The product functor $\mathcal{C} \rightarrow \mathcal{C} / \Sigma \times \mathcal{C} / \Sigma_{(1)}$ is a local functor.

An application

Two R-modules M and N belong to the same monogeny class (written $[M]_{m}=[N]_{m}$) if there exist a monomorphism $M \rightarrow N$ and a monomorphism $N \rightarrow M$.

An application

Two R-modules M and N belong to the same monogeny class (written $[M]_{m}=[N]_{m}$) if there exist a monomorphism $M \rightarrow N$ and a monomorphism $N \rightarrow M$.

Similarly, M and N belong to the same epigeny class (written $\left.[M]_{e}=[N]_{e}\right)$ if there exist an epimorphism $M \rightarrow N$ and an epimorphism $N \rightarrow M$.

Weak Krull-Schmidt for uniserial modules

[F, TAMS 1996].

Weak Krull-Schmidt for uniserial modules

[F, TAMS 1996].
Let $U_{1}, \ldots, U_{n}, V_{1}, \ldots, V_{t}$ be non-zero uniserial right modules over an arbitrary ring R. Then $U_{1} \oplus \cdots \oplus U_{n} \cong V_{1} \oplus \cdots \oplus V_{t}$ if and only if $n=t$ and there are two permutations σ, τ of $\{1,2, \ldots, n\}$ such that $\left[U_{i}\right]_{m}=\left[V_{\sigma(i)}\right]_{m}$ and $\left[U_{i}\right]_{e}=\left[V_{\tau(i)}\right]_{e}$ for every $i=1,2, \ldots, n$.

Ideal Δ and monogeny classes

If two modules A_{R}, B_{R} are isomorphic objects in the category $\operatorname{Mod}-R / \Delta$, then they have the same monogeny class

The general result

Theorem
(Weak Krull-Schmidt Theorem for additive categories) Let \mathcal{A} be an additive category and $\mathcal{I}_{1}, \ldots, \mathcal{I}_{n}$ be ideals of \mathcal{A} such that the canonical functor $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}_{1} \times \cdots \times \mathcal{A} / \mathcal{I}_{n}$ is a local functor. Let $A_{i}, i=1,2, \ldots, t$, and $B_{j}, j=1,2, \ldots, m$, be objects of \mathcal{A} such that the endomorphism rings $\operatorname{End}_{\mathcal{A} / \mathcal{I}_{k}}\left(A_{i}\right)$ are local rings for every $i=1,2, \ldots, t$ and every $k=1,2, \ldots, n$ and the endomorphism rings $\operatorname{End}_{\mathcal{A} / \mathcal{I}_{k}}\left(B_{j}\right)$ are all local rings for every $j=1,2, \ldots, m$ and every $k=1,2, \ldots, n$. Then $A_{1} \oplus \cdots \oplus A_{t} \cong B_{1} \oplus \cdots \oplus B_{m}$ if and only if $t=m$ and there exist n permutations $\sigma_{k}, k=1,2, \ldots, n$, of $\{1,2, \ldots, t\}$ with A_{i} isomorphic to $B_{\sigma_{k}(i)}$ in $\mathcal{A} / \mathcal{I}_{k}$ for every $i=1,2, \ldots, t$ and every $k=1,2, \ldots, n$.

A curiosity: Birkhoff's Theorem for skeletally small preadditive categories
[F.- Fernández-Alonso, 2008]

A curiosity: Birkhoff's Theorem for skeletally small preadditive categories

[F.- Fernández-Alonso, 2008]
A ring R is subdirectly irreducible if the intersection of all non-zero two-sided ideals of R is non-zero.

A curiosity: Birkhoff's Theorem for skeletally small preadditive categories

[F.- Fernández-Alonso, 2008]
A ring R is subdirectly irreducible if the intersection of all non-zero two-sided ideals of R is non-zero.

Birkhoff's Theorem. Any ring is a subdirect product of subdirectly irreducible rings.

Subdirectly irreducible rings

R subdirect product of a family of rings $R_{i}(i \in I)=$ there is an embedding $R \hookrightarrow \prod_{i \in I} R_{i}$ in such a way that $\pi_{j}(R)=R_{j}$ for each projection $\pi_{j}: \prod_{i \in I} R_{i} \rightarrow R_{j}$.

Subdirectly irreducible rings

R subdirect product of a family of rings $R_{i}(i \in I)=$ there is an embedding $R \hookrightarrow \prod_{i \in I} R_{i}$ in such a way that $\pi_{j}(R)=R_{j}$ for each projection $\pi_{j}: \prod_{i \in I} R_{i} \rightarrow R_{j}$.
$R \hookrightarrow \prod_{i \in I} R_{i}$ is called a subdirect embedding.

Subdirectly irreducible rings

R subdirect product of a family of rings $R_{i}(i \in I)=$ there is an embedding $R \hookrightarrow \prod_{i \in I} R_{i}$ in such a way that $\pi_{j}(R)=R_{j}$ for each projection $\pi_{j}: \prod_{i \in I} R_{i} \rightarrow R_{j}$.
$R \hookrightarrow \prod_{i \in I} R_{i}$ is called a subdirect embedding.
R is subdirectly irreducible if and only if for every family of rings R_{i} and every subdirect embedding $\varepsilon: R \rightarrow \prod_{i \in I} R_{i}$, there exists an index $i \in I$ such that $\pi_{i} \varepsilon: R \rightarrow R_{i}$ is an isomorphism.

Birkhoff's Theorem

Birkhoff's Theorem hold for rings, right modules, lattices, any universal algebra.

Birkhoff's Theorem for skeletally small preadditive categories

Let $\mathcal{A}_{i}(i \in I)$ be a family of preadditive categories,
$\prod_{i \in I} \mathcal{A}_{i}$ the product category and, for every $j \in I, P_{j}: \prod_{i \in I} \mathcal{A}_{i} \rightarrow \mathcal{A}_{j}$ be the canonical projection.
We say that a preadditive category \mathcal{A} is a subdirect product of the indexed family $\left\{\mathcal{A}_{i} \mid i \in I\right\}$ of preadditive categories if \mathcal{A} is a subcategory of the product category $\prod_{i \in I} \mathcal{A}_{i}$ and, for every $i \in I$, the restriction $\left.P_{i}\right|_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{A}_{i}$ is a full functor that induces an onto mapping $\operatorname{Ob}(\mathcal{A}) \rightarrow \operatorname{Ob}\left(\mathcal{A}_{i}\right)$.

Birkhoff's Theorem for skeletally small preadditive categories

A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between two categories \mathcal{A}, \mathcal{B} is dense if every object of \mathcal{B} is isomorphic to $F(A)$ for some object A of \mathcal{A}.

Birkhoff's Theorem for skeletally small preadditive categories

A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between two categories \mathcal{A}, \mathcal{B} is dense if every object of \mathcal{B} is isomorphic to $F(A)$ for some object A of \mathcal{A}.

A subdirect embedding $F: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i}$ is a faithful additive functor F such that, for every $i \in I, P_{i} F: \mathcal{A} \rightarrow \mathcal{A}_{i}$ is a dense full functor.

Birkhoff's Theorem for skeletally small preadditive categories

A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between two categories \mathcal{A}, \mathcal{B} is dense if every object of \mathcal{B} is isomorphic to $F(A)$ for some object A of \mathcal{A}.

A subdirect embedding $F: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i}$ is a faithful additive functor F such that, for every $i \in I, P_{i} F: \mathcal{A} \rightarrow \mathcal{A}_{i}$ is a dense full functor.

A preadditive category \mathcal{A} is subdirectly irreducible if, for every subdirect embedding $F: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i}$, there exists an index $i \in I$ such that $P_{i} F: \mathcal{A} \rightarrow \mathcal{A}_{i}$ is a category equivalence.

Theorem

The following conditions are equivalent for a skeletally small preadditive category \mathcal{A} :
(1) \mathcal{A} is subdirectly irreducible.
(2) There exists a nonzero ideal \mathcal{I} of \mathcal{A} such that $\mathcal{I} \subseteq \mathcal{J}$ for every nonzero ideal \mathcal{J} of \mathcal{A}.
(3) If the intersection of a set \mathcal{F} of ideals of \mathcal{A} is the zero ideal, then one of the ideals in \mathcal{F} is zero.
(4) There exist two objects \bar{A} and \bar{B} of \mathcal{A} and a nonzero morphism $\bar{f}: \bar{A} \rightarrow \bar{B}$ such that, for every nonzero morphism $f: A \rightarrow B$ in \mathcal{A}, there exist a positive integer n and morphisms $g_{1}, \ldots, g_{n}: \bar{A} \rightarrow A$ and $h_{1}, \ldots, h_{n}: B \rightarrow \bar{B}$ with $\bar{f}=\sum_{i=1}^{n} h_{i} f g_{i}$.
(5) There exist two objects \bar{A} and \bar{B} of \mathcal{A} with the following two properties: (a) The $\left(\operatorname{End}_{\mathcal{A}}(\bar{B}), \operatorname{End}_{\mathcal{A}}(\bar{A})\right)$-bimodule $\mathcal{A}(\bar{A}, \bar{B})$ is an essential extension of a simple $\left(\operatorname{End}_{\mathcal{A}}(\bar{B})\right.$, End $\left._{\mathcal{A}}(\bar{A})\right)$-subbimodule; (b) For every A, B objects of \mathcal{A} and nonzero morphism $f: A \rightarrow B$ in \mathcal{A}, one has that $\mathcal{A}(B, \bar{B}) f \mathcal{A}(\bar{A}, A) \neq 0$.

Birkhoff's Theorem for skeletally small preadditive categories

For every skeletally small preadditive category \mathcal{A}, there exists a subdirect embedding of \mathcal{A} into a direct product of subdirectly irreducible preadditive categories.

An example

Let $\mathcal{A}, \mathcal{A}_{f}$ be the full subcategories of Ab whose objects are all torsion-free abelian groups and all torsion-free abelian groups of finite rank, respectively.

An example

Let $\mathcal{A}, \mathcal{A}_{f}$ be the full subcategories of Ab whose objects are all torsion-free abelian groups and all torsion-free abelian groups of finite rank, respectively. Then \mathcal{A} and \mathcal{A}_{f} are subdirectly irreducible categories and their least nonzero ideal is generated by the inclusion $\varepsilon: \mathbb{Z} \rightarrow \mathbb{Q}$.

An example

Let $\mathcal{A}, \mathcal{A}_{f}$ be the full subcategories of Ab whose objects are all torsion-free abelian groups and all torsion-free abelian groups of finite rank, respectively. Then \mathcal{A} and \mathcal{A}_{f} are subdirectly irreducible categories and their least nonzero ideal is generated by the inclusion $\varepsilon: \mathbb{Z} \rightarrow \mathbb{Q}$. [F., 2009]

The case of Mod- R

Theorem
Let R be a ring, \mathcal{S} a set of representatives of the simple right R-modules up to isomorphism, and \mathcal{M} the set of all minimal nonzero ideals of Mod- R. Then:

The case of Mod- R

Theorem
Let R be a ring, \mathcal{S} a set of representatives of the simple right R-modules up to isomorphism, and \mathcal{M} the set of all minimal nonzero ideals of Mod- R. Then:
(1) Every nonzero ideal of Mod- R contains an element of \mathcal{M}.

The case of Mod- R

Theorem
Let R be a ring, \mathcal{S} a set of representatives of the simple right R-modules up to isomorphism, and \mathcal{M} the set of all minimal nonzero ideals of Mod- R. Then:
(1) Every nonzero ideal of Mod- R contains an element of \mathcal{M}.
(2) There is a one-to-one correspondence between \mathcal{S} and \mathcal{M}. If $S_{R} \in \mathcal{S}$, the corresponding element $\mathcal{J}_{S_{R}}$ of \mathcal{M} is the ideal of Mod- R generated by any morphism $f: R_{R} \rightarrow E\left(S_{R}\right)$ with image S_{R}.

The case of Mod- R

Theorem
Let R be a ring, \mathcal{S} a set of representatives of the simple right R-modules up to isomorphism, and \mathcal{M} the set of all minimal nonzero ideals of Mod- R. Then:
(1) Every nonzero ideal of Mod- R contains an element of \mathcal{M}.
(2) There is a one-to-one correspondence between \mathcal{S} and \mathcal{M}. If $S_{R} \in \mathcal{S}$, the corresponding element $\mathcal{J}_{S_{R}}$ of \mathcal{M} is the ideal of Mod- R generated by any morphism $f: R_{R} \rightarrow E\left(S_{R}\right)$ with image S_{R}.

Corollary
Let R be a ring. The category Mod- R is subdirectly irreducible if and only if R has a unique simple right module up to isomorphism.

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$
R a ring

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$

R a ring
\mathcal{S} a set of representatives of the simple right R-modules up to isomorphism

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$

R a ring
\mathcal{S} a set of representatives of the simple right R-modules up to isomorphism
$S=S_{R}$ a fixed module in \mathcal{S}

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$

R a ring
\mathcal{S} a set of representatives of the simple right R-modules up to isomorphism
$S=S_{R}$ a fixed module in \mathcal{S}
$\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$ the torsion theory cogenerated by $E\left(S_{R}\right)$, i.e., \mathcal{F}_{S} is the smallest class containing $E\left(S_{R}\right)$ and closed under subobjects, products and extensions

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$

R a ring
\mathcal{S} a set of representatives of the simple right R-modules up to isomorphism
$S=S_{R}$ a fixed module in \mathcal{S}
$\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$ the torsion theory cogenerated by $E\left(S_{R}\right)$, i.e., \mathcal{F}_{S} is the smallest class containing $E\left(S_{R}\right)$ and closed under subobjects, products and extensions, that is, a module is in \mathcal{F}_{S} if and only if it is isomorphic to a submodule of a direct product of copies of $E\left(S_{R}\right)$. Equivalently, \mathcal{F}_{S} the class of all right R-modules cogenerated by $E(S)$.

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$

R a ring
\mathcal{S} a set of representatives of the simple right R-modules up to isomorphism
$S=S_{R}$ a fixed module in \mathcal{S}
$\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$ the torsion theory cogenerated by $E\left(S_{R}\right)$, i.e., \mathcal{F}_{S} is the smallest class containing $E\left(S_{R}\right)$ and closed under subobjects, products and extensions, that is, a module is in \mathcal{F}_{S} if and only if it is isomorphic to a submodule of a direct product of copies of $E\left(S_{R}\right)$. Equivalently, \mathcal{F}_{S} the class of all right R-modules cogenerated by $E(S)$.
$\Rightarrow\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$ is hereditary $\left(=\mathcal{T}_{S}\right.$ is closed under submodules).

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$

The class \mathcal{T}_{S} consists of all R-modules T_{R} with $\operatorname{Hom}\left(T_{R}, E\left(S_{R}\right)\right)=0$

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$

The class \mathcal{T}_{S} consists of all R-modules T_{R} with $\operatorname{Hom}\left(T_{R}, E\left(S_{R}\right)\right)=0$; equivalently, \mathcal{T}_{S} consists of all modules T_{R} in Mod- R with no subquotient isomorphic to S_{R}.

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$

The class \mathcal{T}_{S} consists of all R-modules T_{R} with $\operatorname{Hom}\left(T_{R}, E\left(S_{R}\right)\right)=0$; equivalently, \mathcal{T}_{S} consists of all modules T_{R} in Mod- R with no subquotient isomorphic to S_{R}.

Let $t_{s}:$ Mod- $R \rightarrow$ Mod- R be the left exact radical corresponding to $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$.

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$

The class \mathcal{T}_{S} consists of all R-modules T_{R} with $\operatorname{Hom}\left(T_{R}, E\left(S_{R}\right)\right)=0$; equivalently, \mathcal{T}_{S} consists of all modules T_{R} in Mod- R with no subquotient isomorphic to S_{R}.

Let $t_{S}:$ Mod- $R \rightarrow$ Mod- R be the left exact radical corresponding to $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$.
Let \mathcal{I}_{S} be the ideal of Mod- R defined, for every A_{R}, B_{R}, by

$$
\mathcal{I}_{S}\left(A_{R}, B_{R}\right):=\left\{f \in \operatorname{Hom}\left(A_{R}, B_{R}\right) \mid f\left(A_{R}\right) \subseteq t_{S}\left(B_{R}\right)\right\}
$$

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$

The class \mathcal{T}_{S} consists of all R-modules T_{R} with $\operatorname{Hom}\left(T_{R}, E\left(S_{R}\right)\right)=0$; equivalently, \mathcal{T}_{S} consists of all modules T_{R} in Mod- R with no subquotient isomorphic to S_{R}.

Let $t_{S}:$ Mod- $R \rightarrow$ Mod- R be the left exact radical corresponding to $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$.

Let \mathcal{I}_{S} be the ideal of Mod- R defined, for every A_{R}, B_{R}, by

$$
\mathcal{I}_{S}\left(A_{R}, B_{R}\right):=\left\{f \in \operatorname{Hom}\left(A_{R}, B_{R}\right) \mid f\left(A_{R}\right) \subseteq t_{S}\left(B_{R}\right)\right\}
$$

Equivalently, $\mathcal{I}_{S}\left(A_{R}, B_{R}\right)$ consists of all morphisms $f \in \operatorname{Hom}\left(A_{R}, B_{R}\right)$ that factor through a module in \mathcal{T}_{S}

The torsion theory $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$

The class \mathcal{T}_{S} consists of all R-modules T_{R} with $\operatorname{Hom}\left(T_{R}, E\left(S_{R}\right)\right)=0$; equivalently, \mathcal{T}_{S} consists of all modules T_{R} in Mod- R with no subquotient isomorphic to S_{R}.

Let $t_{s}:$ Mod- $R \rightarrow$ Mod- R be the left exact radical corresponding to $\left(\mathcal{T}_{S}, \mathcal{F}_{S}\right)$.

Let \mathcal{I}_{S} be the ideal of Mod- R defined, for every A_{R}, B_{R}, by

$$
\mathcal{I}_{S}\left(A_{R}, B_{R}\right):=\left\{f \in \operatorname{Hom}\left(A_{R}, B_{R}\right) \mid f\left(A_{R}\right) \subseteq t_{S}\left(B_{R}\right)\right\} .
$$

Equivalently, $\mathcal{I}_{S}\left(A_{R}, B_{R}\right)$ consists of all morphisms $f \in \operatorname{Hom}\left(A_{R}, B_{R}\right)$ that factor through a module in \mathcal{T}_{S}, so that $\operatorname{Mod}-R / \mathcal{I}_{S}$ is the stable category of $\operatorname{Mod}-R$ modulo the subcategory \mathcal{T}_{S}.

The case of Mod- R

Theorem
Let R be a ring, \mathcal{S} a set of representatives of the simple right R-modules up to isomorphism, and, for every $S \in \mathcal{S}$,

$$
\mathcal{I}_{S}\left(A_{R}, B_{R}\right)=\left\{f \in \operatorname{Hom}\left(A_{R}, B_{R}\right) \mid f\left(A_{R}\right) \subseteq t_{S}\left(B_{R}\right)\right\}
$$

Then:
(1) For every $S \in \mathcal{S}$, the category $\operatorname{Mod}-R / \mathcal{I}_{S}$ is subdirectly irreducible.
(2) The canonical functor $\operatorname{Mod}-R \rightarrow \prod_{S \in \mathcal{S}} \operatorname{Mod}-R / \mathcal{I}_{S}$ is a subdirect embedding.

