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Semilocal Rings

A ring R is semilocal if R/J(R) is semisimple artinian, that is, a
finite direct product of rings of matrices over division rings.

If R is commutative,
R semilocal ⇔ R has finitely many maximal ideals.
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Examples of endomorphism rings that are semilocal rings

I Endomorphism rings of artinian modules are semilocal rings.
(Camps and Dicks)

I Endomorphism rings of finitely generated modules over a
semilocal commutative ring are semilocal rings. (Warfield)

I Endomorphism rings of finitely presented modules over a
semilocal ring are semilocal rings. (- and Herbera)

I A module is uniserial if its lattice of submodules is linearly
ordered by ⊆. Endomorphism rings of finite direct sums of
uniserial modules are semilocal rings. (Herbera and
Shamsuddin)

I Endomorphism rings of modules of finite Goldie dimension
and finite dual Goldie dimension are semilocal rings. (Herbera
and Shamsuddin)
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Local Morphisms

A ring morphism ϕ : R → S is a local morphism if, for every r ∈ R,
ϕ(r) invertible in S implies r invertible in R.

(First studied, in the
non-commutative setting, by P. M. Cohn in the case of S a
division ring.)
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Semilocal Rings and Local Morphisms

Theorem
(Camps and Dicks) A ring R is semilocal if and only if there
exists a local morphism R → S for some semilocal ring S, if and
only if there exists a local morphism R → S for some semisimple
artinian ring S.



Rings of finite type

[F.-Př́ıhoda, 2011]

A special example of semilocal rings is given by rings of finite type,
that is, the rings R with R/J(R) a finite direct product of division
rings.

More precisely:
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Rings of type n

Proposition

Let S be a ring with Jacobson radical J(S) and n ≥ 1 be an
integer. The following conditions are equivalent:

(a) The ring S/J(S) is a direct product of n division rings.

(b) n is the smallest of the positive integers m for which there is a
local morphism of S into a direct product of m division rings.

(c) The ring S has exactly n distinct maximal right ideals, and
they are all two-sided ideals in S.

(d) The ring S has exactly n distinct maximal left ideals, and they
are all two-sided ideals in S.

A ring is said to be of type n if it satisfies the equivalent conditions
of the Proposition.
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A ring is of finite type if it is of type n for some n ≥ 1.

A module is of type n if its endomorphism ring is a ring of type n.

A module is of finite type if it is of type n for some n.
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Examples of modules of finite type

A module has type 0 if and only if it is the zero module.

A module has type 1 if and only if its endomorphism ring is local.

A module has type 2 if and only if its endomorphism ring has
exactly two maximal right ideals, necessarily two-sided.

Uniserial modules are of type ≤ 2.

Cyclically presented modules over local rings are of type ≤ 2.
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Examples of modules of finite type

If f : E → E ′ is a homomorphism between injective
indecomposable modules, then ker f is of type ≤ 2.

If f : P → P ′ is a homomorphism between couniform projective
modules, then cokerf is of type ≤ 2.

A module MR is square-free if it does not contain a direct sum of
two non-zero isomorphic submodules.

A finitely generated square-free semisimple module is a module of
finite type.



Examples of modules of finite type

If f : E → E ′ is a homomorphism between injective
indecomposable modules, then ker f is of type ≤ 2.

If f : P → P ′ is a homomorphism between couniform projective
modules, then cokerf is of type ≤ 2.

A module MR is square-free if it does not contain a direct sum of
two non-zero isomorphic submodules.

A finitely generated square-free semisimple module is a module of
finite type.



Examples of modules of finite type

If f : E → E ′ is a homomorphism between injective
indecomposable modules, then ker f is of type ≤ 2.

If f : P → P ′ is a homomorphism between couniform projective
modules, then cokerf is of type ≤ 2.

A module MR is square-free if it does not contain a direct sum of
two non-zero isomorphic submodules.

A finitely generated square-free semisimple module is a module of
finite type.



Examples of modules of finite type

If f : E → E ′ is a homomorphism between injective
indecomposable modules, then ker f is of type ≤ 2.

If f : P → P ′ is a homomorphism between couniform projective
modules, then cokerf is of type ≤ 2.

A module MR is square-free if it does not contain a direct sum of
two non-zero isomorphic submodules.

A finitely generated square-free semisimple module is a module of
finite type.



Examples of modules of finite type

An injective module of finite Goldie dimension is of finite type if
and only if it is square-free.

If MR is an artinian module with a square-free socle, then MR is a
module of finite type.

If MR is a noetherian module with MR/MRJ(R) a semisimple
square-free module, then MR is a module of finite type.

Let E ,E ′ be injective square-free modules of finite Goldie
dimension and let ϕ : E → E ′ be a module morphism. Then kerϕ
is a module of finite type.
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Local Functors

An additive functor F : A → B between preadditive categories A
and B is said to be a local functor if, for every morphism f : A→ A′

in A, F (f ) isomorphism in B implies f isomorphism in A.

It must not be confused with isomorphism reflecting functor: for
every A,A′ objects of A, F (A) ∼= F (A′) implies A ∼= A′.

The functor −⊗Z Q of { f. g. free Z-modules } to vect-Q is
isomorphism reflecting but not local.

The functor −⊗Z Z/pZ× soc of {Z/pZ,Z/p2Z} to
vect-Z/pZ× vect-Z/pZ is local but not isomorphism reflecting.
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Jacobon radical

Lemma
Let A be a preadditive category and A,B objects of A. The
following conditions are equivalent for a morphism f : A→ B:
(a) 1A − gf has a left inverse for every morphism g : B → A;
(b) 1B − fg has a left inverse for every morphism g : B → A;
(c) 1A − gf has a two-sided inverse for every morphism g : B → A.

Let J (A,B) be the set of all morphisms f ∈ HomA(A,B)
satisfying the equivalent conditions of the Lemma. Then J turns
out to be an ideal of the category A, called the Jacobson radical
of A.
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Local Functors and Jacobson radical

I The canonical functor A → A/J , with A a preadditive
category and J its Jacobson radical, is a local functor.

I More generally, if A is a preadditive category and I is any
ideal of A contained in the Jacobson radical, the canonical
functor A → A/I is a local functor.

I Conversely, the kernel of any local functor F : A → B is
contained in the Jacobson radical of A.

I A full functor F : A → B is a local functor if and only if its
kernel is contained in the Jacobson radical J of A.
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The canonical functor A → A/I1 × · · · × A/In

[Alahmadi-F., 2013]

Problem: Let A be a preadditive category and let I1, . . . , In be
ideals of A.
When is the canonical functor A → A/I1 × · · · × A/In a local
functor?
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For our problem, we will introduce non-commutative polynomials
pn = pn(x , y1, . . . , yn) with coefficients in the ring Z of integers.

More precisely, let x , y1, y2, y3, . . . be infinitely many
non-commutative indeterminates over the ring Z. There is a
strictly ascending chain

Z〈x , y1〉 ⊂ Z〈x , y1, y2〉 ⊂ Z〈x , y1, y2, y3〉 ⊂ . . .

of non-commutative integral domains, where Z〈x , y1, . . . , yn〉
indicates the ring of polynomials in the non-commutative
indeterminates x , y1, . . . , yn with coefficients in Z.
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Proposition

Let Z be the ring of integers and x , y1, y2, y3, . . . be
non-commutative indeterminates over Z.

Let Z〈x , y1, . . . , yn〉 be
the ring of non-commutative polynomials in the indeterminates
x , y1, . . . , yn with coefficients in Z for every n ≥ 1. Then there
exists, for each n ≥ 1, a unique polynomial
pn = pn(x , y1, . . . , yn) ∈ Z〈x , y1, . . . , yn〉 such that

1− pnx = (1− y1x)(1− y2x) . . . (1− ynx). (1)

Moreover, the polynomials pn, n ≥ 1, have the following properties:
(a) 1− xpn = (1− xy1)(1− xy2) . . . (1− xyn) for every n ≥ 1.
(b) p1 = y1, and pn+1 = yn+1 + pn(1− xyn+1) for every n ≥ 1.
(c)

pn =
∑

1≤i≤n yi −
∑

1≤i1<i2≤n yi1xyi2+

+
∑

1≤i1<i2<i3≤n yi1xyi2xyi3 − · · ·+ (−1)n−1y1xy2x . . . xyn

for every n ≥ 1.
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Proposition

Let A be a preadditive category, and I1, . . . , In be ideals of A. Let
f : A→ B be a morphism in A.

Assume that the image f : A→ B
of f in the factor category A/Ii is an isomorphism for every
i = 1, 2, . . . , n. Let gi : B → A be a morphism in A whose image
in A/Ii is the inverse of f in A/Ii , for all i = 1, 2, . . . , n. Then
the image of f in A/I1 ∩ · · · ∩ In is an isomorphism. Its inverse in
A/I1 ∩ · · · ∩ In is the image of the morphism
pn(f , g1, . . . , gn) : B → A.
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Theorem

The following conditions are equivalent for n ideals I1, . . . , In of a
preadditive category A with Jacobson radical J :

(a) The canonical functor A → A/I1 × · · · × A/In is local.
(b) The canonical functor A → A/I1 ∩ · · · ∩ In is local.
(c) I1 ∩ · · · ∩ In ⊆ J .



Theorem

The following conditions are equivalent for n ideals I1, . . . , In of a
preadditive category A with Jacobson radical J :
(a) The canonical functor A → A/I1 × · · · × A/In is local.

(b) The canonical functor A → A/I1 ∩ · · · ∩ In is local.
(c) I1 ∩ · · · ∩ In ⊆ J .



Theorem

The following conditions are equivalent for n ideals I1, . . . , In of a
preadditive category A with Jacobson radical J :
(a) The canonical functor A → A/I1 × · · · × A/In is local.
(b) The canonical functor A → A/I1 ∩ · · · ∩ In is local.

(c) I1 ∩ · · · ∩ In ⊆ J .



Theorem

The following conditions are equivalent for n ideals I1, . . . , In of a
preadditive category A with Jacobson radical J :
(a) The canonical functor A → A/I1 × · · · × A/In is local.
(b) The canonical functor A → A/I1 ∩ · · · ∩ In is local.
(c) I1 ∩ · · · ∩ In ⊆ J .



Corollary

Let I1, . . . , In be n ideals of a preadditive category B, and let C be
the full subcategory of B whose objects are all the objects A of B
with I1(A,A) ∩ · · · ∩ In(A,A) ⊆ J(EndB(A)).

Then the ideal
I1 ∩ · · · ∩ In restricted to the full subcategory C, is contained in
the Jacobson radical J of C, so that the canonical functor
C : C → C/I1 × · · · × C/In is local. The category C turns out to
be the largest full subcategory of B with this property. Moreover, if
B is an additive category, then C is also an additive category, and if
B is additive and idempotents split in B, then idempotents split
also in C.
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Semilocal Categories

A preadditive category A is a null category if all its objects are
zero objects.

A preadditive category is semilocal if it is non-null and the
endomorphism ring of every non-zero object is a semilocal ring.
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Examples of Full Semilocal Subcategories of Mod-R

I The full subcategory of all artinian right R-modules.

I The full subcategory of all finitely generated R-modules, for R
a semilocal commutative ring.

I The full subcategory of all finitely presented modules right
R-modules, for R a semilocal ring.

I The full subcategory of all serial modules of finite Goldie
dimension.

I The full subcategory of all modules of finite Goldie dimension
and finite dual Goldie dimension.
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Local functors and maximal ideals

Proposition

Let A be a preadditive category and I1, . . . , In be finitely many
ideals of A.
(a) If the canonical functor A → A/I1 ×A/I2 × · · · × A/In is a
local functor, then every maximal ideal of A contains at least one
of the ideals Ii .
(b) If the category A is semilocal and every maximal ideal of A
contains at least one of the ideals Ii , then the canonical functor
A → A/I1 ×A/I2 × · · · × A/In is local.

Proposition

If C is a semilocal category, the canonical functor
F : C → ⊕M∈Max(C)C/M is local.
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Local functor implies isomorphism reflecting functor for
semilocal categories

Theorem
If A is a semilocal category and I1, . . . , In are ideals of A such
that the canonical functor A → A/I1 × · · · × A/In is local, then
two objects of A are isomorphic in A if and only if they are
isomorphic in A/Ii for every i = 1, 2, . . . , n.



Example 1

[Alahmadi-F., 2013]

R a ring, ideals in the category Mod-R.
(1) The ideal ∆, defined by

∆(AR ,BR) := { f : AR → BR | ker f essential in AR }

for every pair AR ,BR of right R-modules.

(2) The ideal Σ, defined by

Σ(AR ,BR) := { f : AR → BR | f (AR) is superfluous in BR }

for every pair AR ,BR of right R-modules.

Notice that ∆ + Σ is not the improper ideal of Mod-R in general.
For instance, if R is a division ring, then both ∆ and Σ are the
zero ideal.
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Example 1

Theorem
The product functor Mod-R → Mod-R/∆×Mod-R/Σ is a local
functor.



Spectral Category (Gabriel and Oberst)

Let A be any Grothendieck category.

If A,A′ ∈ Ob(A), write A′ ≤e A for “A′ is an essential subobject
of A”.

The spectral category Spec A of A:
• the same objects as A;
• for objects A and B of A,

HomSpec A(A,B) := lim−→HomA(A′,B),

where the direct limit is taken over the family of all essential
subobjects A′ of A.
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Spectral Category

The category Spec A turns out to be a Grothendieck category in
which every exact sequence splits, that is, every object is both
projective and injective.

There is a canonical, left exact, covariant, additive functor
P : A → Spec A, which is the identity on objects and maps any
morphism f ∈ HomA(A,B) to its canonical image in
HomSpec A(A,B).

The ideal ∆ is the kernel of the functor P.
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The Dual Construction (- and Herbera)

The construction of the spectral category can be dualized.

Let A be any Grothendieck category.
If B,B ′ ∈ Ob(A), write B ′ ≤s B for “B ′ is a superfluous subobject
of B”.
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The Dual Construction

The category A′ is an additive category in which every morphism
has a cokernel, but A′ does not have kernels in general.

There is a canonical functor F : A → A′ which is the identity on
objects and maps any morphism f ∈ HomA(A,B) to its canonical
image in HomA′(A,B).

The ideal Σ is the kernel of the functor F .
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Example 2

∆(1) = kernel of the right derived functor

P(1) : Mod-R → Spec(Mod-R)

of the left exact, covariant, additive functor
P : Mod-R → Spec(Mod-R).

Theorem
The product functor Mod-R → Mod-R/∆×Mod-R/∆(1) is a
local functor.
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Example 3

C = full subcategory of Mod-R whose objects are all right
R-modules with a projective cover.

Σ(1) = kernel of the “derived functor” F(1) : C → (Mod-R)′ of the
functor F : C → (Mod-R)′.

Theorem
The product functor C → C/Σ× C/Σ(1) is a local functor.
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An application

Two R-modules M and N belong to the same monogeny class
(written [M]m = [N]m) if there exist a monomorphism M → N and
a monomorphism N → M.

Similarly, M and N belong to the same epigeny class (written
[M]e = [N]e) if there exist an epimorphism M → N and an
epimorphism N → M.
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Weak Krull-Schmidt for uniserial modules

[F, TAMS 1996].

Let U1, . . . , Un, V1, . . . , Vt be non-zero uniserial right modules
over an arbitrary ring R. Then U1 ⊕ · · · ⊕ Un

∼= V1 ⊕ · · · ⊕ Vt if
and only if n = t and there are two permutations σ, τ of
{1, 2, . . . , n} such that [Ui ]m = [Vσ(i)]m and [Ui ]e = [Vτ(i)]e for
every i = 1, 2, . . . , n.
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Ideal ∆ and monogeny classes

If two modules AR ,BR are isomorphic objects in the category
Mod-R/∆, then they have the same monogeny class



The general result

Theorem
(Weak Krull-Schmidt Theorem for additive categories) Let A be
an additive category and I1, . . . , In be ideals of A such that the
canonical functor A → A/I1 × · · · × A/In is a local functor. Let
Ai , i = 1, 2, . . . , t, and Bj , j = 1, 2, . . . ,m, be objects of A such
that the endomorphism rings EndA/Ik (Ai ) are local rings for every
i = 1, 2, . . . , t and every k = 1, 2, . . . , n and the endomorphism
rings EndA/Ik (Bj) are all local rings for every j = 1, 2, . . . ,m and
every k = 1, 2, . . . , n. Then A1 ⊕ · · · ⊕ At

∼= B1 ⊕ · · · ⊕ Bm if and
only if t = m and there exist n permutations σk , k = 1, 2, . . . , n,
of {1, 2, . . . , t} with Ai isomorphic to Bσk (i) in A/Ik for every
i = 1, 2, . . . , t and every k = 1, 2, . . . , n.



A curiosity: Birkhoff’s Theorem for skeletally small
preadditive categories

[F.- Fernández-Alonso, 2008]

A ring R is subdirectly irreducible if the intersection of all non-zero
two-sided ideals of R is non-zero.

Birkhoff’s Theorem. Any ring is a subdirect product of
subdirectly irreducible rings.



A curiosity: Birkhoff’s Theorem for skeletally small
preadditive categories

[F.- Fernández-Alonso, 2008]

A ring R is subdirectly irreducible if the intersection of all non-zero
two-sided ideals of R is non-zero.

Birkhoff’s Theorem. Any ring is a subdirect product of
subdirectly irreducible rings.



A curiosity: Birkhoff’s Theorem for skeletally small
preadditive categories

[F.- Fernández-Alonso, 2008]

A ring R is subdirectly irreducible if the intersection of all non-zero
two-sided ideals of R is non-zero.

Birkhoff’s Theorem. Any ring is a subdirect product of
subdirectly irreducible rings.



Subdirectly irreducible rings

R subdirect product of a family of rings Ri (i ∈ I ) = there is an
embedding R ↪→

∏
i∈I Ri in such a way that πj(R) = Rj for each

projection πj :
∏

i∈I Ri → Rj .

R ↪→
∏

i∈I Ri is called a subdirect embedding.

R is subdirectly irreducible if and only if for every family of rings Ri

and every subdirect embedding ε : R →
∏

i∈I Ri , there exists an
index i ∈ I such that πiε : R → Ri is an isomorphism.
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Birkhoff’s Theorem

Birkhoff’s Theorem hold for rings, right modules, lattices, any
universal algebra.



Birkhoff’s Theorem for skeletally small preadditive
categories

Let Ai (i ∈ I ) be a family of preadditive categories,∏
i∈I Ai the product category and,

for every j ∈ I , Pj :
∏

i∈I Ai → Aj be the canonical projection.
We say that a preadditive category A is a subdirect product of the
indexed family {Ai | i ∈ I } of preadditive categories if A is a
subcategory of the product category

∏
i∈I Ai and, for every i ∈ I ,

the restriction Pi |A : A → Ai is a full functor that induces an onto
mapping Ob(A)→ Ob(Ai ).



Birkhoff’s Theorem for skeletally small preadditive
categories

A functor F : A → B between two categories A,B is dense if every
object of B is isomorphic to F (A) for some object A of A.

A subdirect embedding F : A →
∏

i∈I Ai is a faithful additive
functor F such that, for every i ∈ I , PiF : A → Ai is a dense full
functor.

A preadditive category A is subdirectly irreducible if, for every
subdirect embedding F : A →

∏
i∈I Ai , there exists an index i ∈ I

such that PiF : A → Ai is a category equivalence.
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Theorem
The following conditions are equivalent for a skeletally small
preadditive category A:
(1) A is subdirectly irreducible.
(2) There exists a nonzero ideal I of A such that I ⊆ J for every
nonzero ideal J of A.
(3) If the intersection of a set F of ideals of A is the zero ideal,
then one of the ideals in F is zero.
(4) There exist two objects A and B of A and a nonzero morphism
f : A→ B such that, for every nonzero morphism f : A→ B in A,
there exist a positive integer n and morphisms g1, . . . , gn : A→ A
and h1, . . . , hn : B → B with f =

∑n
i=1 hi fgi .

(5) There exist two objects A and B of A with the following two
properties: (a) The (EndA(B),EndA(A))-bimodule A(A,B) is an
essential extension of a simple (EndA(B),EndA(A))-subbimodule;
(b) For every A,B objects of A and nonzero morphism f : A→ B
in A, one has that A(B,B)fA(A,A) 6= 0.



Birkhoff’s Theorem for skeletally small preadditive
categories

For every skeletally small preadditive category A, there exists a
subdirect embedding of A into a direct product of subdirectly
irreducible preadditive categories.



An example

Let A,Af be the full subcategories of Ab whose objects are all
torsion-free abelian groups and all torsion-free abelian groups of
finite rank, respectively.

Then A and Af are subdirectly irreducible
categories and their least nonzero ideal is generated by the
inclusion ε : Z→ Q. [F., 2009]
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The case of Mod-R

Theorem
Let R be a ring, S a set of representatives of the simple right
R-modules up to isomorphism, and M the set of all minimal
nonzero ideals of Mod-R. Then:

(1) Every nonzero ideal of Mod-R contains an element of M.
(2) There is a one-to-one correspondence between S and M. If
SR ∈ S, the corresponding element JSR of M is the ideal of
Mod-R generated by any morphism f : RR → E (SR) with image
SR .

Corollary

Let R be a ring. The category Mod-R is subdirectly irreducible if
and only if R has a unique simple right module up to isomorphism.
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The torsion theory (TS ,FS)

R a ring

S a set of representatives of the simple right R-modules up to
isomorphism

S = SR a fixed module in S
(TS ,FS) the torsion theory cogenerated by E (SR), i.e., FS is the
smallest class containing E (SR) and closed under subobjects,
products and extensions, that is, a module is in FS if and only if it
is isomorphic to a submodule of a direct product of copies of
E (SR). Equivalently, FS the class of all right R-modules
cogenerated by E (S).

⇒ (TS ,FS) is hereditary (= TS is closed under submodules).
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The torsion theory (TS ,FS)

The class TS consists of all R-modules TR with
Hom(TR ,E (SR)) = 0

; equivalently, TS consists of all modules TR

in Mod-R with no subquotient isomorphic to SR .

Let tS : Mod-R → Mod-R be the left exact radical corresponding
to (TS ,FS).

Let IS be the ideal of Mod-R defined, for every AR ,BR , by

IS(AR ,BR) := { f ∈ Hom(AR ,BR) | f (AR) ⊆ tS(BR) }.

Equivalently, IS(AR ,BR) consists of all morphisms
f ∈ Hom(AR ,BR) that factor through a module in TS , so that
Mod-R/IS is the stable category of Mod-R modulo the
subcategory TS .
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The case of Mod-R

Theorem
Let R be a ring, S a set of representatives of the simple right
R-modules up to isomorphism, and, for every S ∈ S,

IS(AR ,BR) = { f ∈ Hom(AR ,BR) | f (AR) ⊆ tS(BR) }.

Then:
(1) For every S ∈ S, the category Mod-R/IS is subdirectly
irreducible.
(2) The canonical functor Mod-R →

∏
S∈SMod-R/IS is a

subdirect embedding.


