Semilocal categories, local functors and applications

Alberto Facchini University of Padova, Italy

Lens, 1 July 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Semilocal Rings

A ring R is semilocal if R/J(R) is semisimple artinian, that is, a finite direct product of rings of matrices over division rings.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Semilocal Rings

A ring R is semilocal if R/J(R) is semisimple artinian, that is, a finite direct product of rings of matrices over division rings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If R is commutative, R semilocal \Leftrightarrow R has finitely many maximal ideals.

 Endomorphism rings of artinian modules are semilocal rings. (Camps and Dicks)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Endomorphism rings of artinian modules are semilocal rings. (Camps and Dicks)
- Endomorphism rings of finitely generated modules over a semilocal commutative ring are semilocal rings. (Warfield)

- Endomorphism rings of artinian modules are semilocal rings. (Camps and Dicks)
- Endomorphism rings of finitely generated modules over a semilocal commutative ring are semilocal rings. (Warfield)
- Endomorphism rings of finitely presented modules over a semilocal ring are semilocal rings. (- and Herbera)

- Endomorphism rings of artinian modules are semilocal rings. (Camps and Dicks)
- Endomorphism rings of finitely generated modules over a semilocal commutative ring are semilocal rings. (Warfield)
- Endomorphism rings of finitely presented modules over a semilocal ring are semilocal rings. (- and Herbera)
- A module is *uniserial* if its lattice of submodules is linearly ordered by ⊆. Endomorphism rings of finite direct sums of uniserial modules are semilocal rings. (Herbera and Shamsuddin)

- Endomorphism rings of artinian modules are semilocal rings. (Camps and Dicks)
- Endomorphism rings of finitely generated modules over a semilocal commutative ring are semilocal rings. (Warfield)
- Endomorphism rings of finitely presented modules over a semilocal ring are semilocal rings. (- and Herbera)
- A module is *uniserial* if its lattice of submodules is linearly ordered by ⊆. Endomorphism rings of finite direct sums of uniserial modules are semilocal rings. (Herbera and Shamsuddin)
- Endomorphism rings of modules of finite Goldie dimension and finite dual Goldie dimension are semilocal rings. (Herbera and Shamsuddin)

Local Morphisms

A ring morphism $\varphi \colon R \to S$ is a *local morphism* if, for every $r \in R$, $\varphi(r)$ invertible in S implies r invertible in R.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Local Morphisms

A ring morphism $\varphi \colon R \to S$ is a *local morphism* if, for every $r \in R$, $\varphi(r)$ invertible in S implies r invertible in R. (First studied, in the non-commutative setting, by P. M. Cohn in the case of S a division ring.)

Semilocal Rings and Local Morphisms

Theorem

(Camps and Dicks) A ring R is semilocal if and only if there exists a local morphism $R \rightarrow S$ for some semilocal ring S, if and only if there exists a local morphism $R \rightarrow S$ for some semisimple artinian ring S.

Rings of finite type

[F.-Příhoda, 2011]

[F.-Příhoda, 2011]

A special example of semilocal rings is given by rings of finite type, that is, the rings R with R/J(R) a finite direct product of division rings.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

[F.-Příhoda, 2011]

A special example of semilocal rings is given by rings of finite type, that is, the rings R with R/J(R) a finite direct product of division rings.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

More precisely:

Rings of type n

Proposition

Let S be a ring with Jacobson radical J(S) and $n \ge 1$ be an integer. The following conditions are equivalent:

- (a) The ring S/J(S) is a direct product of n division rings.
- (b) *n* is the smallest of the positive integers *m* for which there is a local morphism of *S* into a direct product of *m* division rings.
- (c) The ring S has exactly n distinct maximal right ideals, and they are all two-sided ideals in S.
- (d) The ring S has exactly n distinct maximal left ideals, and they are all two-sided ideals in S.

Rings of type n

Proposition

Let S be a ring with Jacobson radical J(S) and $n \ge 1$ be an integer. The following conditions are equivalent:

- (a) The ring S/J(S) is a direct product of n division rings.
- (b) *n* is the smallest of the positive integers *m* for which there is a local morphism of *S* into a direct product of *m* division rings.
- (c) The ring S has exactly n distinct maximal right ideals, and they are all two-sided ideals in S.
- (d) The ring S has exactly n distinct maximal left ideals, and they are all two-sided ideals in S.

A ring is said to be *of type* n if it satisfies the equivalent conditions of the Proposition.

Rings and modules of finite type

A ring is of finite type if it is of type n for some $n \ge 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rings and modules of finite type

A ring is of finite type if it is of type n for some $n \ge 1$.

A module is of type n if its endomorphism ring is a ring of type n.

Rings and modules of finite type

A ring is of finite type if it is of type n for some $n \ge 1$.

A module is of type n if its endomorphism ring is a ring of type n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A module is of finite type if it is of type n for some n.

A module has type 0 if and only if it is the zero module.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A module has type 0 if and only if it is the zero module.

A module has type 1 if and only if its endomorphism ring is local.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A module has type 0 if and only if it is the zero module.

A module has type 1 if and only if its endomorphism ring is local.

A module has type 2 if and only if its endomorphism ring has exactly two maximal right ideals, necessarily two-sided.

A module has type 0 if and only if it is the zero module.

A module has type 1 if and only if its endomorphism ring is local.

A module has type 2 if and only if its endomorphism ring has exactly two maximal right ideals, necessarily two-sided.

Uniserial modules are of type ≤ 2 .

A module has type 0 if and only if it is the zero module.

A module has type 1 if and only if its endomorphism ring is local.

A module has type 2 if and only if its endomorphism ring has exactly two maximal right ideals, necessarily two-sided.

Uniserial modules are of type ≤ 2 .

Cyclically presented modules over local rings are of type \leq 2.

If $f: E \to E'$ is a homomorphism between injective indecomposable modules, then ker f is of type ≤ 2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If $f: E \to E'$ is a homomorphism between injective indecomposable modules, then ker f is of type ≤ 2 .

If $f: P \to P'$ is a homomorphism between couniform projective modules, then coker f is of type ≤ 2 .

If $f: E \to E'$ is a homomorphism between injective indecomposable modules, then ker f is of type ≤ 2 .

If $f: P \to P'$ is a homomorphism between couniform projective modules, then coker f is of type ≤ 2 .

A module M_R is square-free if it does not contain a direct sum of two non-zero isomorphic submodules.

If $f: E \to E'$ is a homomorphism between injective indecomposable modules, then ker f is of type ≤ 2 .

If $f: P \to P'$ is a homomorphism between couniform projective modules, then coker f is of type ≤ 2 .

A module M_R is square-free if it does not contain a direct sum of two non-zero isomorphic submodules.

A finitely generated square-free semisimple module is a module of finite type.

An injective module of finite Goldie dimension is of finite type if and only if it is square-free.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An injective module of finite Goldie dimension is of finite type if and only if it is square-free.

If M_R is an artinian module with a square-free socle, then M_R is a module of finite type.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An injective module of finite Goldie dimension is of finite type if and only if it is square-free.

If M_R is an artinian module with a square-free socle, then M_R is a module of finite type.

If M_R is a noetherian module with $M_R/M_RJ(R)$ a semisimple square-free module, then M_R is a module of finite type.

An injective module of finite Goldie dimension is of finite type if and only if it is square-free.

If M_R is an artinian module with a square-free socle, then M_R is a module of finite type.

If M_R is a noetherian module with $M_R/M_RJ(R)$ a semisimple square-free module, then M_R is a module of finite type.

Let E, E' be injective square-free modules of finite Goldie dimension and let $\varphi \colon E \to E'$ be a module morphism. Then ker φ is a module of finite type.

Local Functors

An additive functor $F: \mathcal{A} \to \mathcal{B}$ between preadditive categories \mathcal{A} and \mathcal{B} is said to be a *local functor* if, for every morphism $f: \mathcal{A} \to \mathcal{A}'$ in \mathcal{A} , F(f) isomorphism in \mathcal{B} implies f isomorphism in \mathcal{A} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Local Functors

An additive functor $F: \mathcal{A} \to \mathcal{B}$ between preadditive categories \mathcal{A} and \mathcal{B} is said to be a *local functor* if, for every morphism $f: \mathcal{A} \to \mathcal{A}'$ in $\mathcal{A}, F(f)$ isomorphism in \mathcal{B} implies f isomorphism in \mathcal{A} .

It must not be confused with *isomorphism reflecting* functor: for every A, A' objects of $A, F(A) \cong F(A')$ implies $A \cong A'$.

Local Functors

An additive functor $F: \mathcal{A} \to \mathcal{B}$ between preadditive categories \mathcal{A} and \mathcal{B} is said to be a *local functor* if, for every morphism $f: \mathcal{A} \to \mathcal{A}'$ in $\mathcal{A}, F(f)$ isomorphism in \mathcal{B} implies f isomorphism in \mathcal{A} .

It must not be confused with *isomorphism reflecting* functor: for every A, A' objects of $A, F(A) \cong F(A')$ implies $A \cong A'$.

The functor $- \otimes_{\mathbb{Z}} \mathbb{Q}$ of $\{ f. g. free \mathbb{Z}\text{-modules} \}$ to vect- \mathbb{Q} is isomorphism reflecting but not local.
Local Functors

An additive functor $F: \mathcal{A} \to \mathcal{B}$ between preadditive categories \mathcal{A} and \mathcal{B} is said to be a *local functor* if, for every morphism $f: \mathcal{A} \to \mathcal{A}'$ in $\mathcal{A}, F(f)$ isomorphism in \mathcal{B} implies f isomorphism in \mathcal{A} .

It must not be confused with *isomorphism reflecting* functor: for every A, A' objects of $A, F(A) \cong F(A')$ implies $A \cong A'$.

The functor $- \otimes_{\mathbb{Z}} \mathbb{Q}$ of $\{ f. g. free \mathbb{Z}\text{-modules} \}$ to vect- \mathbb{Q} is isomorphism reflecting but not local.

The functor $- \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z} \times \text{soc}$ of $\{\mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p^2Z\}$ to $\text{vect-}\mathbb{Z}/p\mathbb{Z} \times \text{vect-}\mathbb{Z}/p\mathbb{Z}$ is local but not isomorphism reflecting.

Jacobon radical

Lemma

Let \mathcal{A} be a preadditive category and A, B objects of \mathcal{A} . The following conditions are equivalent for a morphism $f : A \to B$: (a) $1_A - gf$ has a left inverse for every morphism $g : B \to A$; (b) $1_B - fg$ has a left inverse for every morphism $g : B \to A$; (c) $1_A - gf$ has a two-sided inverse for every morphism $g : B \to A$.

Jacobon radical

Lemma

Let \mathcal{A} be a preadditive category and A, B objects of \mathcal{A} . The following conditions are equivalent for a morphism $f: A \to B$: (a) $1_A - gf$ has a left inverse for every morphism $g: B \to A$; (b) $1_B - fg$ has a left inverse for every morphism $g: B \to A$; (c) $1_A - gf$ has a two-sided inverse for every morphism $g: B \to A$.

Let $\mathcal{J}(A, B)$ be the set of all morphisms $f \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ satisfying the equivalent conditions of the Lemma. Then \mathcal{J} turns out to be an ideal of the category \mathcal{A} , called the *Jacobson radical* of \mathcal{A} .

► The canonical functor A → A/J, with A a preadditive category and J its Jacobson radical, is a local functor.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► The canonical functor A → A/J, with A a preadditive category and J its Jacobson radical, is a local functor.
- More generally, if \mathcal{A} is a preadditive category and \mathcal{I} is any ideal of \mathcal{A} contained in the Jacobson radical, the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}$ is a local functor.

- ► The canonical functor A → A/J, with A a preadditive category and J its Jacobson radical, is a local functor.
- More generally, if \mathcal{A} is a preadditive category and \mathcal{I} is any ideal of \mathcal{A} contained in the Jacobson radical, the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}$ is a local functor.
- Conversely, the kernel of any local functor F: A → B is contained in the Jacobson radical of A.

- ► The canonical functor A → A/J, with A a preadditive category and J its Jacobson radical, is a local functor.
- More generally, if \mathcal{A} is a preadditive category and \mathcal{I} is any ideal of \mathcal{A} contained in the Jacobson radical, the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}$ is a local functor.
- Conversely, the kernel of any local functor F: A → B is contained in the Jacobson radical of A.
- A full functor F: A → B is a local functor if and only if its kernel is contained in the Jacobson radical J of A.

The canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \cdots \times \mathcal{A}/\mathcal{I}_n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

[Alahmadi-F., 2013]

The canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \cdots \times \mathcal{A}/\mathcal{I}_n$

[Alahmadi-F., 2013]

Problem: Let \mathcal{A} be a preadditive category and let $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be ideals of \mathcal{A} .

The canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \cdots \times \mathcal{A}/\mathcal{I}_n$

[Alahmadi-F., 2013]

Problem: Let \mathcal{A} be a preadditive category and let $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be ideals of \mathcal{A} . When is the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \cdots \times \mathcal{A}/\mathcal{I}_n$ a local functor?

For our problem, we will introduce non-commutative polynomials $p_n = p_n(x, y_1, \dots, y_n)$ with coefficients in the ring \mathbb{Z} of integers.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For our problem, we will introduce non-commutative polynomials $p_n = p_n(x, y_1, \ldots, y_n)$ with coefficients in the ring \mathbb{Z} of integers. More precisely, let x, y_1, y_2, y_3, \ldots be infinitely many non-commutative indeterminates over the ring \mathbb{Z} .

For our problem, we will introduce non-commutative polynomials $p_n = p_n(x, y_1, \ldots, y_n)$ with coefficients in the ring \mathbb{Z} of integers. More precisely, let x, y_1, y_2, y_3, \ldots be infinitely many non-commutative indeterminates over the ring \mathbb{Z} . There is a strictly ascending chain

$$\mathbb{Z}\langle x, y_1 \rangle \subset \mathbb{Z}\langle x, y_1, y_2 \rangle \subset \mathbb{Z}\langle x, y_1, y_2, y_3 \rangle \subset \dots$$

of non-commutative integral domains, where $\mathbb{Z}\langle x, y_1, \ldots, y_n \rangle$ indicates the ring of polynomials in the non-commutative indeterminates x, y_1, \ldots, y_n with coefficients in \mathbb{Z} .

Let \mathbb{Z} be the ring of integers and x, y_1, y_2, y_3, \ldots be non-commutative indeterminates over \mathbb{Z} .

Let \mathbb{Z} be the ring of integers and x, y_1, y_2, y_3, \ldots be non-commutative indeterminates over \mathbb{Z} . Let $\mathbb{Z}\langle x, y_1, \ldots, y_n \rangle$ be the ring of non-commutative polynomials in the indeterminates x, y_1, \ldots, y_n with coefficients in \mathbb{Z} for every $n \ge 1$.

Let \mathbb{Z} be the ring of integers and x, y_1, y_2, y_3, \ldots be non-commutative indeterminates over \mathbb{Z} . Let $\mathbb{Z}\langle x, y_1, \ldots, y_n \rangle$ be the ring of non-commutative polynomials in the indeterminates x, y_1, \ldots, y_n with coefficients in \mathbb{Z} for every $n \ge 1$. Then there exists, for each $n \ge 1$, a unique polynomial $p_n = p_n(x, y_1, \ldots, y_n) \in \mathbb{Z}\langle x, y_1, \ldots, y_n \rangle$ such that

$$1 - p_n x = (1 - y_1 x)(1 - y_2 x) \dots (1 - y_n x).$$
(1)

Let \mathbb{Z} be the ring of integers and x, y_1, y_2, y_3, \ldots be non-commutative indeterminates over \mathbb{Z} . Let $\mathbb{Z}\langle x, y_1, \ldots, y_n \rangle$ be the ring of non-commutative polynomials in the indeterminates x, y_1, \ldots, y_n with coefficients in \mathbb{Z} for every $n \ge 1$. Then there exists, for each $n \ge 1$, a unique polynomial $p_n = p_n(x, y_1, \ldots, y_n) \in \mathbb{Z}\langle x, y_1, \ldots, y_n \rangle$ such that

$$1 - p_n x = (1 - y_1 x)(1 - y_2 x) \dots (1 - y_n x).$$
(1)

Moreover, the polynomials p_n , $n \ge 1$, have the following properties:

Let \mathbb{Z} be the ring of integers and $x, y_1, y_2, y_3, ...$ be non-commutative indeterminates over \mathbb{Z} . Let $\mathbb{Z}\langle x, y_1, ..., y_n \rangle$ be the ring of non-commutative polynomials in the indeterminates $x, y_1, ..., y_n$ with coefficients in \mathbb{Z} for every $n \ge 1$. Then there exists, for each $n \ge 1$, a unique polynomial $p_n = p_n(x, y_1, ..., y_n) \in \mathbb{Z}\langle x, y_1, ..., y_n \rangle$ such that

$$1 - p_n x = (1 - y_1 x)(1 - y_2 x) \dots (1 - y_n x).$$
(1)

Moreover, the polynomials p_n , $n \ge 1$, have the following properties: (a) $1 - xp_n = (1 - xy_1)(1 - xy_2) \dots (1 - xy_n)$ for every $n \ge 1$.

Let \mathbb{Z} be the ring of integers and $x, y_1, y_2, y_3, ...$ be non-commutative indeterminates over \mathbb{Z} . Let $\mathbb{Z}\langle x, y_1, ..., y_n \rangle$ be the ring of non-commutative polynomials in the indeterminates $x, y_1, ..., y_n$ with coefficients in \mathbb{Z} for every $n \ge 1$. Then there exists, for each $n \ge 1$, a unique polynomial $p_n = p_n(x, y_1, ..., y_n) \in \mathbb{Z}\langle x, y_1, ..., y_n \rangle$ such that

$$1 - p_n x = (1 - y_1 x)(1 - y_2 x) \dots (1 - y_n x).$$
(1)

Moreover, the polynomials p_n , $n \ge 1$, have the following properties: (a) $1 - xp_n = (1 - xy_1)(1 - xy_2) \dots (1 - xy_n)$ for every $n \ge 1$. (b) $p_1 = y_1$, and $p_{n+1} = y_{n+1} + p_n(1 - xy_{n+1})$ for every $n \ge 1$.

Let \mathbb{Z} be the ring of integers and x, y_1, y_2, y_3, \ldots be non-commutative indeterminates over \mathbb{Z} . Let $\mathbb{Z}\langle x, y_1, \ldots, y_n \rangle$ be the ring of non-commutative polynomials in the indeterminates x, y_1, \ldots, y_n with coefficients in \mathbb{Z} for every $n \ge 1$. Then there exists, for each $n \ge 1$, a unique polynomial $p_n = p_n(x, y_1, \ldots, y_n) \in \mathbb{Z}\langle x, y_1, \ldots, y_n \rangle$ such that

$$1 - p_n x = (1 - y_1 x)(1 - y_2 x) \dots (1 - y_n x).$$
(1)

Moreover, the polynomials p_n , $n \ge 1$, have the following properties: (a) $1 - xp_n = (1 - xy_1)(1 - xy_2) \dots (1 - xy_n)$ for every $n \ge 1$. (b) $p_1 = y_1$, and $p_{n+1} = y_{n+1} + p_n(1 - xy_{n+1})$ for every $n \ge 1$. (c)

$$p_n = \sum_{1 \le i \le n} y_i - \sum_{1 \le i_1 < i_2 \le n} y_{i_1} x y_{i_2} + \sum_{1 \le i_1 < i_2 < i_3 \le n} y_{i_1} x y_{i_2} x y_{i_3} - \dots + (-1)^{n-1} y_1 x y_2 x \dots x y_n$$

for every $n \ge 1$.

Let \mathcal{A} be a preadditive category, and $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be ideals of \mathcal{A} . Let $f : \mathcal{A} \to \mathcal{B}$ be a morphism in \mathcal{A} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let \mathcal{A} be a preadditive category, and $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be ideals of \mathcal{A} . Let $f : \mathcal{A} \to \mathcal{B}$ be a morphism in \mathcal{A} . Assume that the image $\overline{f} : \mathcal{A} \to \mathcal{B}$ of f in the factor category $\mathcal{A}/\mathcal{I}_i$ is an isomorphism for every $i = 1, 2, \ldots, n$.

Let \mathcal{A} be a preadditive category, and $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be ideals of \mathcal{A} . Let $f: \mathcal{A} \to \mathcal{B}$ be a morphism in \mathcal{A} . Assume that the image $\overline{f}: \mathcal{A} \to \mathcal{B}$ of f in the factor category $\mathcal{A}/\mathcal{I}_i$ is an isomorphism for every $i = 1, 2, \ldots, n$. Let $g_i: \mathcal{B} \to \mathcal{A}$ be a morphism in \mathcal{A} whose image in $\mathcal{A}/\mathcal{I}_i$ is the inverse of \overline{f} in $\mathcal{A}/\mathcal{I}_i$, for all $i = 1, 2, \ldots, n$.

Let \mathcal{A} be a preadditive category, and $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be ideals of \mathcal{A} . Let $f: \mathcal{A} \to \mathcal{B}$ be a morphism in \mathcal{A} . Assume that the image $\overline{f}: \mathcal{A} \to \mathcal{B}$ of f in the factor category $\mathcal{A}/\mathcal{I}_i$ is an isomorphism for every $i = 1, 2, \ldots, n$. Let $g_i: \mathcal{B} \to \mathcal{A}$ be a morphism in \mathcal{A} whose image in $\mathcal{A}/\mathcal{I}_i$ is the inverse of \overline{f} in $\mathcal{A}/\mathcal{I}_i$, for all $i = 1, 2, \ldots, n$. Then the image of f in $\mathcal{A}/\mathcal{I}_1 \cap \cdots \cap \mathcal{I}_n$ is an isomorphism. Its inverse in $\mathcal{A}/\mathcal{I}_1 \cap \cdots \cap \mathcal{I}_n$ is the image of the morphism $p_n(f, g_1, \ldots, g_n): \mathcal{B} \to \mathcal{A}$.

The following conditions are equivalent for n ideals $\mathcal{I}_1, \ldots, \mathcal{I}_n$ of a preadditive category \mathcal{A} with Jacobson radical \mathcal{J} :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The following conditions are equivalent for n ideals $\mathcal{I}_1, \ldots, \mathcal{I}_n$ of a preadditive category \mathcal{A} with Jacobson radical \mathcal{J} : (a) The canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \cdots \times \mathcal{A}/\mathcal{I}_n$ is local.

The following conditions are equivalent for n ideals $\mathcal{I}_1, \ldots, \mathcal{I}_n$ of a preadditive category \mathcal{A} with Jacobson radical \mathcal{J} : (a) The canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \cdots \times \mathcal{A}/\mathcal{I}_n$ is local. (b) The canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \cap \cdots \cap \mathcal{I}_n$ is local.

The following conditions are equivalent for n ideals $\mathcal{I}_1, \ldots, \mathcal{I}_n$ of a preadditive category \mathcal{A} with Jacobson radical \mathcal{J} :

- (a) The canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \cdots \times \mathcal{A}/\mathcal{I}_n$ is local.
- (b) The canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \cap \cdots \cap \mathcal{I}_n$ is local.
- (c) $\mathcal{I}_1 \cap \cdots \cap \mathcal{I}_n \subseteq \mathcal{J}$.

Let $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be n ideals of a preadditive category \mathcal{B} , and let \mathcal{C} be the full subcategory of \mathcal{B} whose objects are all the objects A of \mathcal{B} with $\mathcal{I}_1(A, A) \cap \cdots \cap \mathcal{I}_n(A, A) \subseteq J(\operatorname{End}_{\mathcal{B}}(A)).$

Let $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be *n* ideals of a preadditive category \mathcal{B} , and let \mathcal{C} be the full subcategory of \mathcal{B} whose objects are all the objects A of \mathcal{B} with $\mathcal{I}_1(A, A) \cap \cdots \cap \mathcal{I}_n(A, A) \subseteq J(\operatorname{End}_{\mathcal{B}}(A))$. Then the ideal $\mathcal{I}_1 \cap \cdots \cap \mathcal{I}_n$ restricted to the full subcategory \mathcal{C} , is contained in the Jacobson radical \mathcal{J} of \mathcal{C} , so that the canonical functor $\mathcal{C}: \mathcal{C} \to \mathcal{C}/\mathcal{I}_1 \times \cdots \times \mathcal{C}/\mathcal{I}_n$ is local.

Let $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be *n* ideals of a preadditive category \mathcal{B} , and let \mathcal{C} be the full subcategory of \mathcal{B} whose objects are all the objects A of \mathcal{B} with $\mathcal{I}_1(A, A) \cap \cdots \cap \mathcal{I}_n(A, A) \subseteq J(\operatorname{End}_{\mathcal{B}}(A))$. Then the ideal $\mathcal{I}_1 \cap \cdots \cap \mathcal{I}_n$ restricted to the full subcategory \mathcal{C} , is contained in the Jacobson radical \mathcal{J} of \mathcal{C} , so that the canonical functor $\mathcal{C}: \mathcal{C} \to \mathcal{C}/\mathcal{I}_1 \times \cdots \times \mathcal{C}/\mathcal{I}_n$ is local. The category \mathcal{C} turns out to be the largest full subcategory of \mathcal{B} with this property.

Let $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be n ideals of a preadditive category \mathcal{B} , and let \mathcal{C} be the full subcategory of \mathcal{B} whose objects are all the objects A of \mathcal{B} with $\mathcal{I}_1(A, A) \cap \cdots \cap \mathcal{I}_n(A, A) \subseteq J(\operatorname{End}_{\mathcal{B}}(A))$. Then the ideal $\mathcal{I}_1 \cap \cdots \cap \mathcal{I}_n$ restricted to the full subcategory \mathcal{C} , is contained in the Jacobson radical \mathcal{J} of \mathcal{C} , so that the canonical functor $C: \mathcal{C} \to \mathcal{C}/\mathcal{I}_1 \times \cdots \times \mathcal{C}/\mathcal{I}_n$ is local. The category \mathcal{C} turns out to be the largest full subcategory of \mathcal{B} with this property. Moreover, if \mathcal{B} is an additive category, then \mathcal{C} is also an additive category, and if \mathcal{B} is additive and idempotents split in \mathcal{B} , then idempotents split also in \mathcal{C} .

Semilocal Categories

A preadditive category \mathcal{A} is a *null* category if all its objects are zero objects.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A preadditive category \mathcal{A} is a *null* category if all its objects are zero objects.

A preadditive category is *semilocal* if it is non-null and the endomorphism ring of every non-zero object is a semilocal ring.

Examples of Full Semilocal Subcategories of Mod-R

Examples of Full Semilocal Subcategories of Mod-R

► The full subcategory of all artinian right *R*-modules.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
- ► The full subcategory of all artinian right *R*-modules.
- ► The full subcategory of all finitely generated *R*-modules, for *R* a semilocal commutative ring.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► The full subcategory of all artinian right *R*-modules.
- ► The full subcategory of all finitely generated *R*-modules, for *R* a semilocal commutative ring.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► The full subcategory of all finitely presented modules right *R*-modules, for *R* a semilocal ring.

- ► The full subcategory of all artinian right *R*-modules.
- ► The full subcategory of all finitely generated *R*-modules, for *R* a semilocal commutative ring.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► The full subcategory of all finitely presented modules right *R*-modules, for *R* a semilocal ring.
- The full subcategory of all serial modules of finite Goldie dimension.

- ► The full subcategory of all artinian right *R*-modules.
- ► The full subcategory of all finitely generated *R*-modules, for *R* a semilocal commutative ring.
- ► The full subcategory of all finitely presented modules right *R*-modules, for *R* a semilocal ring.
- The full subcategory of all serial modules of finite Goldie dimension.
- The full subcategory of all modules of finite Goldie dimension and finite dual Goldie dimension.

Proposition

Let \mathcal{A} be a preadditive category and $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be finitely many ideals of \mathcal{A} .

(a) If the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \mathcal{A}/\mathcal{I}_2 \times \cdots \times \mathcal{A}/\mathcal{I}_n$ is a local functor, then every maximal ideal of \mathcal{A} contains at least one of the ideals \mathcal{I}_i .

Proposition

Let \mathcal{A} be a preadditive category and $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be finitely many ideals of \mathcal{A} .

(a) If the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \mathcal{A}/\mathcal{I}_2 \times \cdots \times \mathcal{A}/\mathcal{I}_n$ is a local functor, then every maximal ideal of \mathcal{A} contains at least one of the ideals \mathcal{I}_i .

(b) If the category \mathcal{A} is semilocal and every maximal ideal of \mathcal{A} contains at least one of the ideals \mathcal{I}_i , then the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \mathcal{A}/\mathcal{I}_2 \times \cdots \times \mathcal{A}/\mathcal{I}_n$ is local.

Proposition

Let \mathcal{A} be a preadditive category and $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be finitely many ideals of \mathcal{A} .

(a) If the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \mathcal{A}/\mathcal{I}_2 \times \cdots \times \mathcal{A}/\mathcal{I}_n$ is a local functor, then every maximal ideal of \mathcal{A} contains at least one of the ideals \mathcal{I}_i .

(b) If the category \mathcal{A} is semilocal and every maximal ideal of \mathcal{A} contains at least one of the ideals \mathcal{I}_i , then the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \mathcal{A}/\mathcal{I}_2 \times \cdots \times \mathcal{A}/\mathcal{I}_n$ is local.

Proposition

If C is a semilocal category, the canonical functor $F \colon C \to \bigoplus_{\mathcal{M} \in \mathsf{Max}(C)} C / \mathcal{M}$ is local.

Local functor implies isomorphism reflecting functor for semilocal categories

Theorem

If \mathcal{A} is a semilocal category and $\mathcal{I}_1, \ldots, \mathcal{I}_n$ are ideals of \mathcal{A} such that the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \cdots \times \mathcal{A}/\mathcal{I}_n$ is local, then two objects of \mathcal{A} are isomorphic in \mathcal{A} if and only if they are isomorphic in $\mathcal{A}/\mathcal{I}_i$ for every $i = 1, 2, \ldots, n$.

[Alahmadi-F., 2013]

[Alahmadi-F., 2013]

R a ring, ideals in the category Mod-R. (1) The ideal Δ , defined by

 $\Delta(A_R, B_R) := \{ f \colon A_R \to B_R \mid \ker f \text{ essential in } A_R \}$

for every pair A_R , B_R of right *R*-modules.

[Alahmadi-F., 2013]

R a ring, ideals in the category Mod-R. (1) The ideal Δ , defined by

 $\Delta(A_R, B_R) := \{ f \colon A_R \to B_R \mid \ker f \text{ essential in } A_R \}$

for every pair A_R , B_R of right *R*-modules.

(2) The ideal Σ , defined by

 $\Sigma(A_R, B_R) := \{ f : A_R \to B_R \mid f(A_R) \text{ is superfluous in } B_R \}$

for every pair A_R , B_R of right *R*-modules.

[Alahmadi-F., 2013]

R a ring, ideals in the category Mod-R. (1) The ideal Δ , defined by

 $\Delta(A_R, B_R) := \{ f \colon A_R \to B_R \mid \text{ker } f \text{ essential in } A_R \}$

for every pair A_R , B_R of right *R*-modules.

(2) The ideal Σ , defined by

 $\Sigma(A_R, B_R) := \{ f : A_R \to B_R \mid f(A_R) \text{ is superfluous in } B_R \}$

for every pair A_R , B_R of right *R*-modules.

Notice that $\Delta + \Sigma$ is not the improper ideal of Mod-*R* in general. For instance, if *R* is a division ring, then both Δ and Σ are the zero ideal.

Theorem

The product functor ${\rm Mod}\text{-}R\to {\rm Mod}\text{-}R/\Delta\times {\rm Mod}\text{-}R/\Sigma$ is a local functor.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let \mathcal{A} be any Grothendieck category.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let \mathcal{A} be any Grothendieck category. If $A, A' \in Ob(\mathcal{A})$, write $A' \leq_e A$ for "A' is an essential subobject of A".

Let \mathcal{A} be any Grothendieck category. If $A, A' \in Ob(\mathcal{A})$, write $A' \leq_e A$ for "A' is an essential subobject of A".

The *spectral category* Spec \mathcal{A} of \mathcal{A} :

Let \mathcal{A} be any Grothendieck category. If $A, A' \in Ob(\mathcal{A})$, write $A' \leq_e A$ for "A' is an essential subobject of A".

The *spectral category* Spec \mathcal{A} of \mathcal{A} :

• the same objects as \mathcal{A} ;

Let \mathcal{A} be any Grothendieck category. If $A, A' \in Ob(\mathcal{A})$, write $A' \leq_e A$ for "A' is an essential subobject of A".

The spectral category Spec \mathcal{A} of \mathcal{A} :

- the same objects as A;
- for objects A and B of A,

$$\operatorname{Hom}_{\operatorname{Spec} \mathcal{A}}(A,B) := \varinjlim \operatorname{Hom}_{\mathcal{A}}(A',B),$$

where the direct limit is taken over the family of all essential subobjects A' of A.

The category $\operatorname{Spec} \mathcal{A}$ turns out to be a Grothendieck category in which every exact sequence splits, that is, every object is both projective and injective.

The category $\operatorname{Spec} \mathcal{A}$ turns out to be a Grothendieck category in which every exact sequence splits, that is, every object is both projective and injective.

There is a canonical, left exact, covariant, additive functor $P: \mathcal{A} \to \operatorname{Spec} \mathcal{A}$, which is the identity on objects and maps any morphism $f \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ to its canonical image in $\operatorname{Hom}_{\operatorname{Spec} \mathcal{A}}(A, B)$.

The category $\operatorname{Spec} \mathcal{A}$ turns out to be a Grothendieck category in which every exact sequence splits, that is, every object is both projective and injective.

There is a canonical, left exact, covariant, additive functor $P: \mathcal{A} \to \operatorname{Spec} \mathcal{A}$, which is the identity on objects and maps any morphism $f \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ to its canonical image in $\operatorname{Hom}_{\operatorname{Spec} \mathcal{A}}(A, B)$.

The ideal Δ is the kernel of the functor *P*.

The construction of the spectral category can be dualized.

The construction of the spectral category can be dualized.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let ${\mathcal A}$ be any Grothendieck category.

The construction of the spectral category can be dualized.

Let \mathcal{A} be any Grothendieck category. If $B, B' \in Ob(\mathcal{A})$, write $B' \leq_s B$ for "B' is a superfluous subobject of B".

The construction of the spectral category can be dualized.

Let \mathcal{A} be any Grothendieck category. If $B, B' \in Ob(\mathcal{A})$, write $B' \leq_s B$ for "B' is a superfluous subobject of B".

The category \mathcal{A}' :

The construction of the spectral category can be dualized.

Let \mathcal{A} be any Grothendieck category. If $B, B' \in Ob(\mathcal{A})$, write $B' \leq_s B$ for "B' is a superfluous subobject of B".

The category \mathcal{A}' :

• the same objects as \mathcal{A} ;

The construction of the spectral category can be dualized.

Let \mathcal{A} be any Grothendieck category. If $B, B' \in Ob(\mathcal{A})$, write $B' \leq_s B$ for "B' is a superfluous subobject of B".

The category \mathcal{A}' :

- the same objects as \mathcal{A} ;
- for objects A and B of A,

$$\operatorname{Hom}_{\mathcal{A}'}(A,B) := \varinjlim \operatorname{Hom}_{\mathcal{A}}(A, B/B'),$$

where the direct limit is taken over the family of all superfluous subobjects B' of B.

The category \mathcal{A}' is an additive category in which every morphism has a cokernel, but \mathcal{A}' does not have kernels in general.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The category \mathcal{A}' is an additive category in which every morphism has a cokernel, but \mathcal{A}' does not have kernels in general.

There is a canonical functor $F : \mathcal{A} \to \mathcal{A}'$ which is the identity on objects and maps any morphism $f \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ to its canonical image in $\operatorname{Hom}_{\mathcal{A}'}(A, B)$.

The category \mathcal{A}' is an additive category in which every morphism has a cokernel, but \mathcal{A}' does not have kernels in general.

There is a canonical functor $F \colon \mathcal{A} \to \mathcal{A}'$ which is the identity on objects and maps any morphism $f \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ to its canonical image in $\operatorname{Hom}_{\mathcal{A}'}(A, B)$.

The ideal Σ is the kernel of the functor F.

$\Delta^{(1)} =$ kernel of the right derived functor

$$P^{(1)}$$
: Mod- $R \to$ Spec(Mod- R)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

of the left exact, covariant, additive functor $P: \operatorname{Mod} - R \to \operatorname{Spec}(\operatorname{Mod} - R)$.

 $\Delta^{(1)} =$ kernel of the right derived functor

$$P^{(1)}: \operatorname{Mod} - R \to \operatorname{Spec}(\operatorname{Mod} - R)$$

of the left exact, covariant, additive functor $P: \operatorname{Mod} - R \to \operatorname{Spec}(\operatorname{Mod} - R)$.

Theorem

The product functor $Mod-R \to Mod-R/\Delta \times Mod-R/\Delta^{(1)}$ is a local functor.

C =full subcategory of Mod-R whose objects are all right R-modules with a projective cover.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

C =full subcategory of Mod-R whose objects are all right R-modules with a projective cover.

 $\Sigma_{(1)} = \text{kernel of the "derived functor" } F_{(1)} \colon \mathcal{C} \to (\text{Mod-}R)' \text{ of the functor } F \colon \mathcal{C} \to (\text{Mod-}R)'.$

C =full subcategory of Mod-R whose objects are all right R-modules with a projective cover.

 $\Sigma_{(1)} = \text{kernel of the "derived functor"} \ F_{(1)} \colon \mathcal{C} \to (\text{Mod-}R)' \text{ of the functor } F \colon \mathcal{C} \to (\text{Mod-}R)'.$

Theorem

The product functor $\mathcal{C} \to \mathcal{C} / \Sigma \times \mathcal{C} / \Sigma_{(1)}$ is a local functor.
An application

Two *R*-modules *M* and *N* belong to the same monogeny class (written $[M]_m = [N]_m$) if there exist a monomorphism $M \to N$ and a monomorphism $N \to M$.

An application

Two *R*-modules *M* and *N* belong to the same monogeny class (written $[M]_m = [N]_m$) if there exist a monomorphism $M \to N$ and a monomorphism $N \to M$.

Similarly, M and N belong to the same epigeny class (written $[M]_e = [N]_e$) if there exist an epimorphism $M \to N$ and an epimorphism $N \to M$.

Weak Krull-Schmidt for uniserial modules

[F, TAMS 1996].

Weak Krull-Schmidt for uniserial modules

[F, TAMS 1996].

Let $U_1, \ldots, U_n, V_1, \ldots, V_t$ be non-zero uniserial right modules over an arbitrary ring R. Then $U_1 \oplus \cdots \oplus U_n \cong V_1 \oplus \cdots \oplus V_t$ if and only if n = t and there are two permutations σ, τ of $\{1, 2, \ldots, n\}$ such that $[U_i]_m = [V_{\sigma(i)}]_m$ and $[U_i]_e = [V_{\tau(i)}]_e$ for every $i = 1, 2, \ldots, n$.

Ideal Δ and monogeny classes

If two modules A_R, B_R are isomorphic objects in the category $Mod-R/\Delta$, then they have the same monogeny class

The general result

Theorem

(Weak Krull-Schmidt Theorem for additive categories) Let A be an additive category and $\mathcal{I}_1, \ldots, \mathcal{I}_n$ be ideals of \mathcal{A} such that the canonical functor $\mathcal{A} \to \mathcal{A}/\mathcal{I}_1 \times \cdots \times \mathcal{A}/\mathcal{I}_n$ is a local functor. Let A_i , $i = 1, 2, \ldots, t$, and B_i , $j = 1, 2, \ldots, m$, be objects of A such that the endomorphism rings $\operatorname{End}_{\mathcal{A}/\mathcal{I}_{k}}(A_{i})$ are local rings for every $i = 1, 2, \ldots, t$ and every $k = 1, 2, \ldots, n$ and the endomorphism rings $\operatorname{End}_{\mathcal{A}/\mathcal{I}_{k}}(B_{j})$ are all local rings for every $j = 1, 2, \ldots, m$ and every k = 1, 2, ..., n. Then $A_1 \oplus \cdots \oplus A_t \cong B_1 \oplus \cdots \oplus B_m$ if and only if t = m and there exist n permutations σ_k , k = 1, 2, ..., n, of $\{1, 2, ..., t\}$ with A_i isomorphic to $B_{\sigma_k(i)}$ in $\mathcal{A}/\mathcal{I}_k$ for every i = 1, 2, ..., t and every k = 1, 2, ..., n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

[F.- Fernández-Alonso, 2008]

[F.- Fernández-Alonso, 2008]

A ring R is *subdirectly irreducible* if the intersection of all non-zero two-sided ideals of R is non-zero.

[F.- Fernández-Alonso, 2008]

A ring R is *subdirectly irreducible* if the intersection of all non-zero two-sided ideals of R is non-zero.

Birkhoff's Theorem. Any ring is a subdirect product of subdirectly irreducible rings.

Subdirectly irreducible rings

R subdirect product of a family of rings R_i $(i \in I)$ = there is an embedding $R \hookrightarrow \prod_{i \in I} R_i$ in such a way that $\pi_j(R) = R_j$ for each projection $\pi_j \colon \prod_{i \in I} R_i \to R_j$.

Subdirectly irreducible rings

R subdirect product of a family of rings R_i $(i \in I)$ = there is an embedding $R \hookrightarrow \prod_{i \in I} R_i$ in such a way that $\pi_j(R) = R_j$ for each projection $\pi_j \colon \prod_{i \in I} R_i \to R_j$.

 $R \hookrightarrow \prod_{i \in I} R_i$ is called a *subdirect embedding*.

Subdirectly irreducible rings

R subdirect product of a family of rings R_i $(i \in I)$ = there is an embedding $R \hookrightarrow \prod_{i \in I} R_i$ in such a way that $\pi_j(R) = R_j$ for each projection $\pi_j \colon \prod_{i \in I} R_i \to R_j$.

 $R \hookrightarrow \prod_{i \in I} R_i$ is called a *subdirect embedding*.

R is subdirectly irreducible if and only if for every family of rings R_i and every subdirect embedding $\varepsilon \colon R \to \prod_{i \in I} R_i$, there exists an index $i \in I$ such that $\pi_i \varepsilon \colon R \to R_i$ is an isomorphism.

Birkhoff's Theorem

Birkhoff's Theorem hold for rings, right modules, lattices, any universal algebra.

Let \mathcal{A}_i $(i \in I)$ be a family of preadditive categories, $\prod_{i \in I} \mathcal{A}_i$ the product category and, for every $j \in I$, $P_j \colon \prod_{i \in I} \mathcal{A}_i \to \mathcal{A}_j$ be the canonical projection. We say that a preadditive category \mathcal{A} is a *subdirect product* of the indexed family $\{\mathcal{A}_i \mid i \in I\}$ of preadditive categories if \mathcal{A} is a subcategory of the product category $\prod_{i \in I} \mathcal{A}_i$ and, for every $i \in I$, the restriction $P_i|_{\mathcal{A}} \colon \mathcal{A} \to \mathcal{A}_i$ is a full functor that induces an onto mapping $Ob(\mathcal{A}) \to Ob(\mathcal{A}_i)$.

A functor $F : \mathcal{A} \to \mathcal{B}$ between two categories \mathcal{A}, \mathcal{B} is *dense* if every object of \mathcal{B} is isomorphic to $F(\mathcal{A})$ for some object \mathcal{A} of \mathcal{A} .

A functor $F : \mathcal{A} \to \mathcal{B}$ between two categories \mathcal{A}, \mathcal{B} is *dense* if every object of \mathcal{B} is isomorphic to $F(\mathcal{A})$ for some object \mathcal{A} of \mathcal{A} .

A subdirect embedding $F : \mathcal{A} \to \prod_{i \in I} \mathcal{A}_i$ is a faithful additive functor F such that, for every $i \in I$, $P_iF : \mathcal{A} \to \mathcal{A}_i$ is a dense full functor.

A functor $F : \mathcal{A} \to \mathcal{B}$ between two categories \mathcal{A}, \mathcal{B} is *dense* if every object of \mathcal{B} is isomorphic to $F(\mathcal{A})$ for some object \mathcal{A} of \mathcal{A} .

A subdirect embedding $F : \mathcal{A} \to \prod_{i \in I} \mathcal{A}_i$ is a faithful additive functor F such that, for every $i \in I$, $P_iF : \mathcal{A} \to \mathcal{A}_i$ is a dense full functor.

A preadditive category \mathcal{A} is *subdirectly irreducible* if, for every subdirect embedding $F : \mathcal{A} \to \prod_{i \in I} \mathcal{A}_i$, there exists an index $i \in I$ such that $P_iF : \mathcal{A} \to \mathcal{A}_i$ is a category equivalence.

Theorem

The following conditions are equivalent for a skeletally small preadditive category \mathcal{A} :

(1) \mathcal{A} is subdirectly irreducible.

(2) There exists a nonzero ideal \mathcal{I} of \mathcal{A} such that $\mathcal{I} \subseteq \mathcal{J}$ for every nonzero ideal \mathcal{J} of \mathcal{A} .

(3) If the intersection of a set \mathcal{F} of ideals of \mathcal{A} is the zero ideal, then one of the ideals in \mathcal{F} is zero.

(4) There exist two objects \overline{A} and \overline{B} of \mathcal{A} and a nonzero morphism $\overline{f}: \overline{A} \to \overline{B}$ such that, for every nonzero morphism $f: A \to B$ in \mathcal{A} , there exist a positive integer n and morphisms $g_1, \ldots, g_n: \overline{A} \to A$ and $h_1, \ldots, h_n: B \to \overline{B}$ with $\overline{f} = \sum_{i=1}^n h_i fg_i$. (5) There exist two objects \overline{A} and \overline{B} of \mathcal{A} with the following two properties: (a) The (End_{\mathcal{A}}(\overline{B}), End_{\mathcal{A}}(\overline{A}))-bimodule $\mathcal{A}(\overline{A}, \overline{B})$ is an

essential extension of a simple $(\operatorname{End}_{\mathcal{A}}(\overline{B}), \operatorname{End}_{\mathcal{A}}(\overline{A}))$ -subbimodule; (b) For every A, B objects of \mathcal{A} and nonzero morphism $f : A \to B$ in \mathcal{A} , one has that $\mathcal{A}(B,\overline{B})f\mathcal{A}(\overline{A},A) \neq 0$.

For every skeletally small preadditive category A, there exists a subdirect embedding of A into a direct product of subdirectly irreducible preadditive categories.

An example

Let $\mathcal{A}, \mathcal{A}_f$ be the full subcategories of Ab whose objects are all torsion-free abelian groups and all torsion-free abelian groups of finite rank, respectively.

An example

Let $\mathcal{A}, \mathcal{A}_f$ be the full subcategories of Ab whose objects are all torsion-free abelian groups and all torsion-free abelian groups of finite rank, respectively. Then \mathcal{A} and \mathcal{A}_f are subdirectly irreducible categories and their least nonzero ideal is generated by the inclusion $\varepsilon \colon \mathbb{Z} \to \mathbb{Q}$.

An example

Let $\mathcal{A}, \mathcal{A}_f$ be the full subcategories of Ab whose objects are all torsion-free abelian groups and all torsion-free abelian groups of finite rank, respectively. Then \mathcal{A} and \mathcal{A}_f are subdirectly irreducible categories and their least nonzero ideal is generated by the inclusion $\varepsilon \colon \mathbb{Z} \to \mathbb{Q}$. [F., 2009]

Theorem

Let R be a ring, S a set of representatives of the simple right R-modules up to isomorphism, and M the set of all minimal nonzero ideals of Mod-R. Then:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

Let R be a ring, S a set of representatives of the simple right R-modules up to isomorphism, and \mathcal{M} the set of all minimal nonzero ideals of Mod-R. Then:

(1) Every nonzero ideal of Mod-R contains an element of \mathcal{M} .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

Let R be a ring, S a set of representatives of the simple right R-modules up to isomorphism, and \mathcal{M} the set of all minimal nonzero ideals of Mod-R. Then:

(1) Every nonzero ideal of Mod-R contains an element of \mathcal{M} .

(2) There is a one-to-one correspondence between S and M. If $S_R \in S$, the corresponding element \mathcal{J}_{S_R} of M is the ideal of Mod-R generated by any morphism $f : R_R \to E(S_R)$ with image S_R .

Theorem

Let R be a ring, S a set of representatives of the simple right R-modules up to isomorphism, and \mathcal{M} the set of all minimal nonzero ideals of Mod-R. Then:

(1) Every nonzero ideal of Mod-R contains an element of \mathcal{M} .

(2) There is a one-to-one correspondence between S and M. If $S_R \in S$, the corresponding element \mathcal{J}_{S_R} of M is the ideal of Mod-R generated by any morphism $f : R_R \to E(S_R)$ with image S_R .

Corollary

Let R be a ring. The category Mod-R is subdirectly irreducible if and only if R has a unique simple right module up to isomorphism.

R a ring

R a ring

 $\ensuremath{\mathcal{S}}$ a set of representatives of the simple right $R\mbox{-modules}$ up to isomorphism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

R a ring

 ${\mathcal S}$ a set of representatives of the simple right R-modules up to isomorphism

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $S = S_R$ a fixed module in ${\cal S}$

R a ring

 ${\mathcal S}$ a set of representatives of the simple right $R\text{-}{\rm modules}$ up to isomorphism

 $S = S_R$ a fixed module in ${\cal S}$

 $(\mathcal{T}_S, \mathcal{F}_S)$ the torsion theory cogenerated by $E(S_R)$, i.e., \mathcal{F}_S is the smallest class containing $E(S_R)$ and closed under subobjects, products and extensions

R a ring

 ${\mathcal S}$ a set of representatives of the simple right $R\mbox{-}{\rm modules}$ up to isomorphism

 $S = S_R$ a fixed module in ${\cal S}$

 $(\mathcal{T}_S, \mathcal{F}_S)$ the torsion theory cogenerated by $E(S_R)$, i.e., \mathcal{F}_S is the smallest class containing $E(S_R)$ and closed under subobjects, products and extensions, that is, a module is in \mathcal{F}_S if and only if it is isomorphic to a submodule of a direct product of copies of $E(S_R)$. Equivalently, \mathcal{F}_S the class of all right *R*-modules cogenerated by E(S).

R a ring

 ${\mathcal S}$ a set of representatives of the simple right $R\mbox{-modules}$ up to isomorphism

 $S = S_R$ a fixed module in ${\cal S}$

 $(\mathcal{T}_S, \mathcal{F}_S)$ the torsion theory cogenerated by $E(S_R)$, i.e., \mathcal{F}_S is the smallest class containing $E(S_R)$ and closed under subobjects, products and extensions, that is, a module is in \mathcal{F}_S if and only if it is isomorphic to a submodule of a direct product of copies of $E(S_R)$. Equivalently, \mathcal{F}_S the class of all right *R*-modules cogenerated by E(S).

 $\Rightarrow (\mathcal{T}_{\mathcal{S}}, \mathcal{F}_{\mathcal{S}}) \text{ is hereditary } (= \mathcal{T}_{\mathcal{S}} \text{ is closed under submodules}).$

The class \mathcal{T}_S consists of all *R*-modules T_R with $\operatorname{Hom}(T_R, E(S_R)) = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The class \mathcal{T}_S consists of all *R*-modules T_R with $\operatorname{Hom}(T_R, E(S_R)) = 0$; equivalently, \mathcal{T}_S consists of all modules T_R in Mod-*R* with no subquotient isomorphic to S_R .

The class \mathcal{T}_S consists of all *R*-modules T_R with $\operatorname{Hom}(T_R, E(S_R)) = 0$; equivalently, \mathcal{T}_S consists of all modules T_R in Mod-*R* with no subquotient isomorphic to S_R .

Let $t_S \colon \operatorname{Mod} R \to \operatorname{Mod} R$ be the left exact radical corresponding to $(\mathcal{T}_S, \mathcal{F}_S)$.

The class \mathcal{T}_S consists of all *R*-modules T_R with $\operatorname{Hom}(T_R, E(S_R)) = 0$; equivalently, \mathcal{T}_S consists of all modules T_R in Mod-*R* with no subquotient isomorphic to S_R .

Let $t_S \colon \operatorname{Mod} R \to \operatorname{Mod} R$ be the left exact radical corresponding to $(\mathcal{T}_S, \mathcal{F}_S)$.

Let $\mathcal{I}_{\mathcal{S}}$ be the ideal of Mod-*R* defined, for every A_R, B_R , by

 $\mathcal{I}_{\mathcal{S}}(A_R, B_R) := \{ f \in \operatorname{Hom}(A_R, B_R) \mid f(A_R) \subseteq t_{\mathcal{S}}(B_R) \}.$
The torsion theory $(\mathcal{T}_S, \mathcal{F}_S)$

The class \mathcal{T}_S consists of all *R*-modules T_R with $\operatorname{Hom}(T_R, E(S_R)) = 0$; equivalently, \mathcal{T}_S consists of all modules T_R in Mod-*R* with no subquotient isomorphic to S_R .

Let $t_S \colon \operatorname{Mod} R \to \operatorname{Mod} R$ be the left exact radical corresponding to $(\mathcal{T}_S, \mathcal{F}_S)$.

Let \mathcal{I}_S be the ideal of Mod-*R* defined, for every A_R, B_R , by

 $\mathcal{I}_{\mathcal{S}}(A_R, B_R) := \{ f \in \operatorname{Hom}(A_R, B_R) \mid f(A_R) \subseteq t_{\mathcal{S}}(B_R) \}.$

Equivalently, $\mathcal{I}_{S}(A_{R}, B_{R})$ consists of all morphisms $f \in \operatorname{Hom}(A_{R}, B_{R})$ that factor through a module in \mathcal{T}_{S}

The torsion theory $(\mathcal{T}_S, \mathcal{F}_S)$

The class \mathcal{T}_S consists of all *R*-modules T_R with $\operatorname{Hom}(T_R, E(S_R)) = 0$; equivalently, \mathcal{T}_S consists of all modules T_R in Mod-*R* with no subquotient isomorphic to S_R .

Let $t_S \colon \operatorname{Mod} R \to \operatorname{Mod} R$ be the left exact radical corresponding to $(\mathcal{T}_S, \mathcal{F}_S)$.

Let \mathcal{I}_S be the ideal of Mod-*R* defined, for every A_R, B_R , by

 $\mathcal{I}_{\mathcal{S}}(A_R, B_R) := \{ f \in \operatorname{Hom}(A_R, B_R) \mid f(A_R) \subseteq t_{\mathcal{S}}(B_R) \}.$

Equivalently, $\mathcal{I}_{S}(A_{R}, B_{R})$ consists of all morphisms $f \in \operatorname{Hom}(A_{R}, B_{R})$ that factor through a module in \mathcal{T}_{S} , so that $\operatorname{Mod} R/\mathcal{I}_{S}$ is the stable category of $\operatorname{Mod} R$ modulo the subcategory \mathcal{T}_{S} .

Theorem

Let R be a ring, S a set of representatives of the simple right R-modules up to isomorphism, and, for every $S \in S$,

$$\mathcal{I}_{\mathcal{S}}(A_{\mathcal{R}}, B_{\mathcal{R}}) = \{ f \in \operatorname{Hom}(A_{\mathcal{R}}, B_{\mathcal{R}}) \mid f(A_{\mathcal{R}}) \subseteq t_{\mathcal{S}}(B_{\mathcal{R}}) \}.$$

Then:

(1) For every $S \in S$, the category Mod- R/I_S is subdirectly irreducible.

(2) The canonical functor $\operatorname{Mod}-R \to \prod_{S \in S} \operatorname{Mod}-R/\mathcal{I}_S$ is a subdirect embedding.